![Phân tích tư tưởng của nhân dân qua đoạn thơ: Những người vợ nhớ chồng… Những cuộc đời đã hóa sông núi ta trong Đất nước của Nguyễn Khoa Điềm](https://timtailieu.net/upload/document/136415/phan-tich-tu-tuong-cua-nhan-dan-qua-doan-tho-039-039-nhung-nguoi-vo-nho-chong-nhung-cuoc-doi-da-hoa-song-nui-ta-039-039-trong-dat-nuoc-cua-nguyen-khoa-136415.jpg)
ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi: TOÁN, Khối A
Số trang: 8
Loại file: pdf
Dung lượng: 354.89 KB
Lượt xem: 5
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
PHẦN CHUNG CHO TẤT CẢ THÍ SINH(7 điểm).Câu I ( 2 điểm) Cho hàm số y x 3 (1 2m) x 2 (2 m) x m 2 (1) m là tham số. 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) với m=2. 2. Tìm tham số m để đồ thị của hàm số (1) có tiếp tuyến tạo với đường thẳng d: x y 7 0 góc
Nội dung trích xuất từ tài liệu:
ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi: TOÁN, Khối ATRƯỜNG THPT ĐỒNG QUAN ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2010 __________________________ Môn thi: TOÁN, Khối A Thời gian làm bài 180 phút, không kể thời gian phát đề.PHẦN CHUNG CHO TẤT CẢ THÍ SINH(7 điểm).Câu I ( 2 điểm) Cho hàm số y x 3 (1 2m) x 2 (2 m) x m 2 (1) m là tham số. 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) với m=2. 2. Tìm tham số m để đồ thị của hàm số (1) có tiếp tuyến tạo với đường thẳng d: x y 7 0 góc , biết 1 cos . 26Câu II (2 điểm) 2x 1. Giải bất phương trình: log 2 1 4 5 . 2 4 x 2. Giải phương trình: 3 sin 2 x.2 cos x 1 2 cos 3 x cos 2 x 3 cos x.Câu III (1 điểm) 4 x 1 Tính tích phân: I 1 dx . 0 1 2x 2Câu IV(1 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân đỉnh A, AB a 2 . Gọi I là trung điểm củaBC, hình chiếu vuông góc H của S lên mặt đáy (ABC) thỏa mãn: IA 2 IH , góc giữa SC và mặt đáy (ABC) 0bằng 60 .Hãy tính thể tích khối chóp S.ABC và khoảng cách từ trung điểm K của SB tới (SAH).Câu V(1 điểm) Cho x, y, z là ba số thực dương thay đổi và thỏa mãn: x 2 y 2 z 2 xyz . Hãy tìm giá trị lớn nhất của biểu thức: x y zP 2 2 2 . x yz y zx z xyPHẦN TỰ CHỌN (3 điểm): Thí sinh chỉ chọn làm một trong hai phần ( phần A hoặc phần B ).A. Theo chương trình chuẩn:Câu VI.a (2 điểm) 1. Trong mặt phẳng Oxy, cho tam giác ABC biết A(3;0), đường cao từ đỉnh B có phương trình x y 1 0 , trung tuyến từ đỉnh C có phương trình: 2x-y-2=0. Viết phương trình đường tròn ngoại tiếp tam giác ABC. 2. Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(-1;1;0), B(0;0;-2) và C(1;1;1). Hãy viết phương trình mặt phẳng (P) qua hai điểm A và B, đồng thời khoảng cách từ C tới mặt phẳng (P) bằng 3.Câu VII.a (1 điểm) 10 2 Cho khai triển: 1 2 x x 2 x 1 a 0 a1 x a 2 x 2 ... a14 x14 . Hãy tìm giá trị của a6 .B. Theo chương trình nâng cao:Câu VI.b (2 điểm)1. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC biết A(1;-1), B(2;1), diện tích bằng 5,5 và trọng tâm G thuộc đường thẳng d: 3 x y 4 0 . Tìm tọa độ đỉnh C. x 2 y 1 z 12.Trong không gian với hệ trục Oxyz, cho mặt phẳng (P) x y z 1 0 ,đường thẳng d: 1 1 3Gọi I là giao điểm của d và (P). Viết phương trình của đường thẳng nằm trong (P), vuông góc với d và cách I một khoảng bằng 3 2 .Câu VII.b (1 điểm) 3 zi Giải phương trình ( ẩn z) trên tập số phức: 1. i z 1TRƯỜNG THPT ĐỒNG QUAN ĐÁP ÁN –THANG ĐIỂM ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2010 MÔN:TOÁN, Khối APHẦN CHUNG CHO TẤT CẢ THÍ SINH. Câu ý Nội dung ĐiểmI(2đ) 1(1đ) Khảo sát hàm số khi m = 2 Khi m = 2, hàm số trở thành: y = x3 3x 2 + 4 a) TXĐ: R b) SBT •Giới hạn: lim y ; lim y 0,25 x x •Chiều biến thiên: Có y’ = 3x2 6x; y’=0 x =0, x =2 x 0 2 + y’ + 0 0 + 4 + 0,25 y 0 Hàm số ĐB trên các khoảng ( ; 0) và (2 ; +), nghịch biến trên ...
Nội dung trích xuất từ tài liệu:
ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi: TOÁN, Khối ATRƯỜNG THPT ĐỒNG QUAN ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2010 __________________________ Môn thi: TOÁN, Khối A Thời gian làm bài 180 phút, không kể thời gian phát đề.PHẦN CHUNG CHO TẤT CẢ THÍ SINH(7 điểm).Câu I ( 2 điểm) Cho hàm số y x 3 (1 2m) x 2 (2 m) x m 2 (1) m là tham số. 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) với m=2. 2. Tìm tham số m để đồ thị của hàm số (1) có tiếp tuyến tạo với đường thẳng d: x y 7 0 góc , biết 1 cos . 26Câu II (2 điểm) 2x 1. Giải bất phương trình: log 2 1 4 5 . 2 4 x 2. Giải phương trình: 3 sin 2 x.2 cos x 1 2 cos 3 x cos 2 x 3 cos x.Câu III (1 điểm) 4 x 1 Tính tích phân: I 1 dx . 0 1 2x 2Câu IV(1 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân đỉnh A, AB a 2 . Gọi I là trung điểm củaBC, hình chiếu vuông góc H của S lên mặt đáy (ABC) thỏa mãn: IA 2 IH , góc giữa SC và mặt đáy (ABC) 0bằng 60 .Hãy tính thể tích khối chóp S.ABC và khoảng cách từ trung điểm K của SB tới (SAH).Câu V(1 điểm) Cho x, y, z là ba số thực dương thay đổi và thỏa mãn: x 2 y 2 z 2 xyz . Hãy tìm giá trị lớn nhất của biểu thức: x y zP 2 2 2 . x yz y zx z xyPHẦN TỰ CHỌN (3 điểm): Thí sinh chỉ chọn làm một trong hai phần ( phần A hoặc phần B ).A. Theo chương trình chuẩn:Câu VI.a (2 điểm) 1. Trong mặt phẳng Oxy, cho tam giác ABC biết A(3;0), đường cao từ đỉnh B có phương trình x y 1 0 , trung tuyến từ đỉnh C có phương trình: 2x-y-2=0. Viết phương trình đường tròn ngoại tiếp tam giác ABC. 2. Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(-1;1;0), B(0;0;-2) và C(1;1;1). Hãy viết phương trình mặt phẳng (P) qua hai điểm A và B, đồng thời khoảng cách từ C tới mặt phẳng (P) bằng 3.Câu VII.a (1 điểm) 10 2 Cho khai triển: 1 2 x x 2 x 1 a 0 a1 x a 2 x 2 ... a14 x14 . Hãy tìm giá trị của a6 .B. Theo chương trình nâng cao:Câu VI.b (2 điểm)1. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC biết A(1;-1), B(2;1), diện tích bằng 5,5 và trọng tâm G thuộc đường thẳng d: 3 x y 4 0 . Tìm tọa độ đỉnh C. x 2 y 1 z 12.Trong không gian với hệ trục Oxyz, cho mặt phẳng (P) x y z 1 0 ,đường thẳng d: 1 1 3Gọi I là giao điểm của d và (P). Viết phương trình của đường thẳng nằm trong (P), vuông góc với d và cách I một khoảng bằng 3 2 .Câu VII.b (1 điểm) 3 zi Giải phương trình ( ẩn z) trên tập số phức: 1. i z 1TRƯỜNG THPT ĐỒNG QUAN ĐÁP ÁN –THANG ĐIỂM ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2010 MÔN:TOÁN, Khối APHẦN CHUNG CHO TẤT CẢ THÍ SINH. Câu ý Nội dung ĐiểmI(2đ) 1(1đ) Khảo sát hàm số khi m = 2 Khi m = 2, hàm số trở thành: y = x3 3x 2 + 4 a) TXĐ: R b) SBT •Giới hạn: lim y ; lim y 0,25 x x •Chiều biến thiên: Có y’ = 3x2 6x; y’=0 x =0, x =2 x 0 2 + y’ + 0 0 + 4 + 0,25 y 0 Hàm số ĐB trên các khoảng ( ; 0) và (2 ; +), nghịch biến trên ...
Tài liệu liên quan:
-
BÀI THUYẾT TRÌNH CÔNG TY CỔ PHẦN
11 trang 210 0 0 -
CHẨN ĐOÁN XQUANG GAN VÀ ĐƯỜNG MẬT
11 trang 204 0 0 -
Giáo trình Nguyên tắc phương pháp thẩm định giá (phần 1)
9 trang 169 0 0 -
Tiểu luận triết học - Việt Nam trong xu thế hội nhập và phát triển dưới con mắt triết học
38 trang 96 0 0 -
Gíao trình giao dịch đàm phán kinh doanh. Phần 1
100 trang 84 0 0 -
Đề thi môn tài chính doanh nghiệp
5 trang 82 1 0 -
14 trang 79 0 0
-
Gíao trình giao dịch đàm phán kinh doanh. Phần 2
102 trang 72 0 0 -
Đề cương môn học Phân tích định lượng trong kinh doanh
7 trang 53 0 0 -
800 Câu hỏi trắc nghiệm Vật lý luyện thi Đại học hay và khó
97 trang 52 0 0