Đề thi thử Đại học năm 2011 của Trần Sỹ Tùng ( Có đáp án) - Đề số 16
Số trang: 7
Loại file: pdf
Dung lượng: 202.12 KB
Lượt xem: 11
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tham khảo tài liệu đề thi thử đại học năm 2011 của trần sỹ tùng ( có đáp án) - đề số 16, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Đề thi thử Đại học năm 2011 của Trần Sỹ Tùng ( Có đáp án) - Đề số 16 www.MATHVN.comÔn thi Đại học Trần Sĩ Tùng Đề số 16I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 2x − 4 y=Câu I: (2 điểm) Cho hàm số . x +1 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Tìm trên (C) hai điểm đối xứng nhau qua đường thẳng MN biết M(–3;0) và N(–1; –1)Câu II: (2 điểm) 1 3x 7 4cos4x – cos2x − cos 4 x + cos 1) Giải phương trình: = 2 4 2 3x.2x = 3x + 2x + 1 2) Giải phương trình: π 1 + sin x 2 ∫ 1 + cos x .e dx xCâu III: (1 điểm) Tính tích phân: K= 0Câu IV: (1 điểm) Cho hình chóp tam giác đều S.ABC có độ dài cạnh bên bằng 1. Các mặt bên hợp với mặt phẳng đáy một góc α. Tính thể tích hình cầu nội tiếp hình chóp S.ABC.Câu V: (1 điểm) Gọi a, b, c là ba cạnh của một tam giác có chu vi bằng 2. Chứng minh rằng: 52 ≤ a 2 + b 2 + c 2 + 2abc < 2 27II. PHẦN RIÊNG: (3 điểm) A. Theo cương trình chuẩn:Câu VI.a: (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác có phương trình hai cạnh là 5x – 2y + 6 = 0 và 4x + 7y – 21 = 0. Viết phương trình cạnh thứ ba của tam giác đó, biết rằng trực tâm của nó trùng với gốc tọa độ O. 2) Trong không gian với hệ toạ Oxyz, tìm trên Ox điểm A cách đều đường thẳng x −1 y z + 2 == và mặt phẳng (P) : 2x – y – 2z = 0 (d) : 1 2 2 π cos xCâu VII.a: (1 điểm) Tìm giá trị nhỏ nhất hàm số y = vớ i 0 < x ≤ . sin x(2cos x − sin x) 2 3 B. Theo chương trình nâng cao:Câu VI.b: (2 điểm) 1) Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng (D): x – 3y – 4 = 0 và đường tròn (C): x2 + y2 – 4y = 0. Tìm M thuộc (D) và N thuộc (C) sao cho chúng đối xứng qua điểm A(3;1). x−2 y z−4 = = 2) Trong không gian với hệ trục toạ độ Oxyz, cho đường thẳng (d): −2 3 2 và hai điểm A(1;2; –1), B(7; –2;3). Tìm trên (d) những điểm M sao cho khoảng cách từ đó đến A và B là nhỏ nhất. 2π 2π Câu VII.b: (1 điểm) Cho α = 3 cos + i sin . Tìm các số phức β sao cho β3 = α. 3 3 www.MATHVN.com Trang 16- www.MATHVN.com Hướng dẫn Đề số 16Câu I: 2) MN: x + 2y + 3 = 0. PT đường thẳng (d) MN có dạng: y = 2x + m. Gọi A, B (C) đối xứng nhau qua MN. Hoành độ của A và B là nghiệm của PT: 2x2 + mx + m + 4 = 0 2x 4 (x≠– 2x m x 1 1) (1) (d) cắt (C) tại hai điểm phân biệt (1) có = m2 – 8m – 32 > 0 Ta có A(x1; 2x1 + m), B(x2; 2x2 + m) với x1, x2 là nghiệm của (1) Trung điểm của AB là I x x I m ; m ( theo ...
Nội dung trích xuất từ tài liệu:
Đề thi thử Đại học năm 2011 của Trần Sỹ Tùng ( Có đáp án) - Đề số 16 www.MATHVN.comÔn thi Đại học Trần Sĩ Tùng Đề số 16I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 2x − 4 y=Câu I: (2 điểm) Cho hàm số . x +1 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Tìm trên (C) hai điểm đối xứng nhau qua đường thẳng MN biết M(–3;0) và N(–1; –1)Câu II: (2 điểm) 1 3x 7 4cos4x – cos2x − cos 4 x + cos 1) Giải phương trình: = 2 4 2 3x.2x = 3x + 2x + 1 2) Giải phương trình: π 1 + sin x 2 ∫ 1 + cos x .e dx xCâu III: (1 điểm) Tính tích phân: K= 0Câu IV: (1 điểm) Cho hình chóp tam giác đều S.ABC có độ dài cạnh bên bằng 1. Các mặt bên hợp với mặt phẳng đáy một góc α. Tính thể tích hình cầu nội tiếp hình chóp S.ABC.Câu V: (1 điểm) Gọi a, b, c là ba cạnh của một tam giác có chu vi bằng 2. Chứng minh rằng: 52 ≤ a 2 + b 2 + c 2 + 2abc < 2 27II. PHẦN RIÊNG: (3 điểm) A. Theo cương trình chuẩn:Câu VI.a: (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác có phương trình hai cạnh là 5x – 2y + 6 = 0 và 4x + 7y – 21 = 0. Viết phương trình cạnh thứ ba của tam giác đó, biết rằng trực tâm của nó trùng với gốc tọa độ O. 2) Trong không gian với hệ toạ Oxyz, tìm trên Ox điểm A cách đều đường thẳng x −1 y z + 2 == và mặt phẳng (P) : 2x – y – 2z = 0 (d) : 1 2 2 π cos xCâu VII.a: (1 điểm) Tìm giá trị nhỏ nhất hàm số y = vớ i 0 < x ≤ . sin x(2cos x − sin x) 2 3 B. Theo chương trình nâng cao:Câu VI.b: (2 điểm) 1) Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng (D): x – 3y – 4 = 0 và đường tròn (C): x2 + y2 – 4y = 0. Tìm M thuộc (D) và N thuộc (C) sao cho chúng đối xứng qua điểm A(3;1). x−2 y z−4 = = 2) Trong không gian với hệ trục toạ độ Oxyz, cho đường thẳng (d): −2 3 2 và hai điểm A(1;2; –1), B(7; –2;3). Tìm trên (d) những điểm M sao cho khoảng cách từ đó đến A và B là nhỏ nhất. 2π 2π Câu VII.b: (1 điểm) Cho α = 3 cos + i sin . Tìm các số phức β sao cho β3 = α. 3 3 www.MATHVN.com Trang 16- www.MATHVN.com Hướng dẫn Đề số 16Câu I: 2) MN: x + 2y + 3 = 0. PT đường thẳng (d) MN có dạng: y = 2x + m. Gọi A, B (C) đối xứng nhau qua MN. Hoành độ của A và B là nghiệm của PT: 2x2 + mx + m + 4 = 0 2x 4 (x≠– 2x m x 1 1) (1) (d) cắt (C) tại hai điểm phân biệt (1) có = m2 – 8m – 32 > 0 Ta có A(x1; 2x1 + m), B(x2; 2x2 + m) với x1, x2 là nghiệm của (1) Trung điểm của AB là I x x I m ; m ( theo ...
Tìm kiếm theo từ khóa liên quan:
ôn thi tốt nghiệp luyện thi đại học toán nâng cao đề thi toán đề thi học sinh giỏi toán chuyênGợi ý tài liệu liên quan:
-
8 trang 393 0 0
-
Bộ đề thi học sinh giỏi môn Lịch sử lớp 12 cấp tỉnh năm 2020-2021 có đáp án
26 trang 357 0 0 -
7 trang 350 0 0
-
Đề thi học sinh giỏi môn GDCD lớp 12 năm 2023-2024 có đáp án - Trường THPT Mai Anh Tuấn, Thanh Hóa
28 trang 309 0 0 -
8 trang 307 0 0
-
Ebook Bồi dưỡng học sinh giỏi Tiếng Anh lớp 5 theo chuyên đề
138 trang 272 0 0 -
Đề thi học sinh giỏi môn Ngữ văn lớp 6 năm 2022-2023 có đáp án - Trường THCS Ninh An
8 trang 262 0 0 -
8 trang 248 0 0
-
Đề thi học sinh giỏi môn Ngữ văn lớp 8 năm 2021-2022 có đáp án - Phòng GD&ĐT Châu Đức
4 trang 244 0 0 -
Đề thi học sinh giỏi cấp tỉnh môn Vật lý THPT năm 2023-2024 có đáp án - Sở GD&ĐT Vĩnh Long
6 trang 236 0 0