Danh mục

Đề thi thử Đại học năm 2011 của Trần Sỹ Tùng ( Có đáp án) - Đề số 22

Số trang: 8      Loại file: pdf      Dung lượng: 209.32 KB      Lượt xem: 8      Lượt tải: 0    
Hoai.2512

Hỗ trợ phí lưu trữ khi tải xuống: 3,000 VND Tải xuống file đầy đủ (8 trang) 0

Báo xấu

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu đề thi thử đại học năm 2011 của trần sỹ tùng ( có đáp án) - đề số 22, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Đề thi thử Đại học năm 2011 của Trần Sỹ Tùng ( Có đáp án) - Đề số 22 www.MATHVN.comÔn thi Đại học Trần Sĩ Tùng Đề số 22I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)Câu I (2 điểm). Cho hàm số y = x3 + 3x 2 + m (1) 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m = −4. 2) Tìm m để đồ thị hàm số (1) có hai điểm cực trị A, B sao cho AOB = 1200.Câu II (2 điểm ). π π   sin  3 x −  = sin 2 x sin  x +  . 1) Giải phương trình:  4  4 8 + 21+ 3− x 3− x + 21+ 3− x −4 ≤5. 2) Giải bất phương trình:Câu III (2 điểm). Tính diện tích hình (H) giới hạn bởi các đường y = 1 + 2 x − x 2 và y = 1.Câu IV (2 điểm). Cho hình chóp S.ABC có đáy là ∆ABC vuông cân tại A, AB = AC = a. Mặt bên qua cạnh huyền BC vuông góc với mặt đáy, hai mặt bên còn lại đều hợp với mặt đáy các góc 600. Tính thể tích của khối chóp S.ABC.Câu V (2.0 điểm). Cho a, b, c là ba số dương. Chứng minh rằng: a+b+c ab bc ca + + ≤ a + 3b + 2c b + 3c + 2a c + 3a + 2b 6II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩnCâu VI.a (2 điểm) x +1 y − 2 z − 2 1) Trong không gian với hệ toạ độ Oxyz, cho đường thẳng ∆ : = = và −2 3 2 mặt phẳng (P): x + 3y + 2z + 2 = 0. Lập phương trình đường thẳng song song với mặt phẳng (P), đi qua M(2; 2; 4) và cắt đường thẳng (∆). 2) Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(1; 0), B(3; −1) và đường thẳng (∆): x − 2y −1 = 0. Tìm điểm C thuộc đường thẳng (∆) sao cho diện tích tam giác ABC bằng 6.Câu VII.a (1 điểm) Tìm các số thực b, c để phương trình z2 + bz + c = 0 nhận số phức z = 1 + i làm một nghiệm. B. Theo chương trình nâng caoCâu VI.b (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có diện tích bằng 12, 9 tâm I thuộc đường thẳng (d ) : x − y − 3 = 0 và có hoành độ xI = , trung điểm của một 2 cạnh là giao điểm của (d) và trục Ox. Tìm tọa độ các đỉnh của hình chữ nhật. 2) Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) và mặt phẳng (P) có phương trình là ( S ) : x 2 + y 2 + z 2 − 4 x + 2 y − 6 z + 5 = 0, ( P ) : 2 x + 2 y − z + 16 = 0 . Điểm M di động trên (S) và điểm N di động trên (P). Tính độ dài ngắn nhất của đoạn thẳng MN. Xác định vị trí của M, N tương ứng. (1 + i) 2009Câu VII.b (1 điểm) Giải phương trình: z 2 − 2. z + 2i = 0 trên tập số phức. (1 − i ) 2008 www.MATHVN.com Trang 22- www.MATHVN.com Hướng dẫn Đề số 22  x  2  y  m  4Câu I: 2) Ta có: y’ = 3x2 + 6x = 0  x  0  y  m Vậy hàm số có hai điểm cực trị A(0 ; m) và B(2 ; m + 4) uuu r uuu r 1 . Để ·AOB  120 thì Ta có: 0 cos AOB   OA  (0; m), OB  ( 2; m  4) 2  4  m  0 ...

Tài liệu được xem nhiều:

Tài liệu liên quan: