![Phân tích tư tưởng của nhân dân qua đoạn thơ: Những người vợ nhớ chồng… Những cuộc đời đã hóa sông núi ta trong Đất nước của Nguyễn Khoa Điềm](https://timtailieu.net/upload/document/136415/phan-tich-tu-tuong-cua-nhan-dan-qua-doan-tho-039-039-nhung-nguoi-vo-nho-chong-nhung-cuoc-doi-da-hoa-song-nui-ta-039-039-trong-dat-nuoc-cua-nguyen-khoa-136415.jpg)
Đề thi thử Đại học năm 2011 của Trần Sỹ Tùng ( Có đáp án) - Đề số 22
Số trang: 8
Loại file: pdf
Dung lượng: 209.32 KB
Lượt xem: 8
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tham khảo tài liệu đề thi thử đại học năm 2011 của trần sỹ tùng ( có đáp án) - đề số 22, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Đề thi thử Đại học năm 2011 của Trần Sỹ Tùng ( Có đáp án) - Đề số 22 www.MATHVN.comÔn thi Đại học Trần Sĩ Tùng Đề số 22I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)Câu I (2 điểm). Cho hàm số y = x3 + 3x 2 + m (1) 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m = −4. 2) Tìm m để đồ thị hàm số (1) có hai điểm cực trị A, B sao cho AOB = 1200.Câu II (2 điểm ). π π sin 3 x − = sin 2 x sin x + . 1) Giải phương trình: 4 4 8 + 21+ 3− x 3− x + 21+ 3− x −4 ≤5. 2) Giải bất phương trình:Câu III (2 điểm). Tính diện tích hình (H) giới hạn bởi các đường y = 1 + 2 x − x 2 và y = 1.Câu IV (2 điểm). Cho hình chóp S.ABC có đáy là ∆ABC vuông cân tại A, AB = AC = a. Mặt bên qua cạnh huyền BC vuông góc với mặt đáy, hai mặt bên còn lại đều hợp với mặt đáy các góc 600. Tính thể tích của khối chóp S.ABC.Câu V (2.0 điểm). Cho a, b, c là ba số dương. Chứng minh rằng: a+b+c ab bc ca + + ≤ a + 3b + 2c b + 3c + 2a c + 3a + 2b 6II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩnCâu VI.a (2 điểm) x +1 y − 2 z − 2 1) Trong không gian với hệ toạ độ Oxyz, cho đường thẳng ∆ : = = và −2 3 2 mặt phẳng (P): x + 3y + 2z + 2 = 0. Lập phương trình đường thẳng song song với mặt phẳng (P), đi qua M(2; 2; 4) và cắt đường thẳng (∆). 2) Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(1; 0), B(3; −1) và đường thẳng (∆): x − 2y −1 = 0. Tìm điểm C thuộc đường thẳng (∆) sao cho diện tích tam giác ABC bằng 6.Câu VII.a (1 điểm) Tìm các số thực b, c để phương trình z2 + bz + c = 0 nhận số phức z = 1 + i làm một nghiệm. B. Theo chương trình nâng caoCâu VI.b (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có diện tích bằng 12, 9 tâm I thuộc đường thẳng (d ) : x − y − 3 = 0 và có hoành độ xI = , trung điểm của một 2 cạnh là giao điểm của (d) và trục Ox. Tìm tọa độ các đỉnh của hình chữ nhật. 2) Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) và mặt phẳng (P) có phương trình là ( S ) : x 2 + y 2 + z 2 − 4 x + 2 y − 6 z + 5 = 0, ( P ) : 2 x + 2 y − z + 16 = 0 . Điểm M di động trên (S) và điểm N di động trên (P). Tính độ dài ngắn nhất của đoạn thẳng MN. Xác định vị trí của M, N tương ứng. (1 + i) 2009Câu VII.b (1 điểm) Giải phương trình: z 2 − 2. z + 2i = 0 trên tập số phức. (1 − i ) 2008 www.MATHVN.com Trang 22- www.MATHVN.com Hướng dẫn Đề số 22 x 2 y m 4Câu I: 2) Ta có: y’ = 3x2 + 6x = 0 x 0 y m Vậy hàm số có hai điểm cực trị A(0 ; m) và B(2 ; m + 4) uuu r uuu r 1 . Để ·AOB 120 thì Ta có: 0 cos AOB OA (0; m), OB ( 2; m 4) 2 4 m 0 ...
Nội dung trích xuất từ tài liệu:
Đề thi thử Đại học năm 2011 của Trần Sỹ Tùng ( Có đáp án) - Đề số 22 www.MATHVN.comÔn thi Đại học Trần Sĩ Tùng Đề số 22I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)Câu I (2 điểm). Cho hàm số y = x3 + 3x 2 + m (1) 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m = −4. 2) Tìm m để đồ thị hàm số (1) có hai điểm cực trị A, B sao cho AOB = 1200.Câu II (2 điểm ). π π sin 3 x − = sin 2 x sin x + . 1) Giải phương trình: 4 4 8 + 21+ 3− x 3− x + 21+ 3− x −4 ≤5. 2) Giải bất phương trình:Câu III (2 điểm). Tính diện tích hình (H) giới hạn bởi các đường y = 1 + 2 x − x 2 và y = 1.Câu IV (2 điểm). Cho hình chóp S.ABC có đáy là ∆ABC vuông cân tại A, AB = AC = a. Mặt bên qua cạnh huyền BC vuông góc với mặt đáy, hai mặt bên còn lại đều hợp với mặt đáy các góc 600. Tính thể tích của khối chóp S.ABC.Câu V (2.0 điểm). Cho a, b, c là ba số dương. Chứng minh rằng: a+b+c ab bc ca + + ≤ a + 3b + 2c b + 3c + 2a c + 3a + 2b 6II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩnCâu VI.a (2 điểm) x +1 y − 2 z − 2 1) Trong không gian với hệ toạ độ Oxyz, cho đường thẳng ∆ : = = và −2 3 2 mặt phẳng (P): x + 3y + 2z + 2 = 0. Lập phương trình đường thẳng song song với mặt phẳng (P), đi qua M(2; 2; 4) và cắt đường thẳng (∆). 2) Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(1; 0), B(3; −1) và đường thẳng (∆): x − 2y −1 = 0. Tìm điểm C thuộc đường thẳng (∆) sao cho diện tích tam giác ABC bằng 6.Câu VII.a (1 điểm) Tìm các số thực b, c để phương trình z2 + bz + c = 0 nhận số phức z = 1 + i làm một nghiệm. B. Theo chương trình nâng caoCâu VI.b (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có diện tích bằng 12, 9 tâm I thuộc đường thẳng (d ) : x − y − 3 = 0 và có hoành độ xI = , trung điểm của một 2 cạnh là giao điểm của (d) và trục Ox. Tìm tọa độ các đỉnh của hình chữ nhật. 2) Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) và mặt phẳng (P) có phương trình là ( S ) : x 2 + y 2 + z 2 − 4 x + 2 y − 6 z + 5 = 0, ( P ) : 2 x + 2 y − z + 16 = 0 . Điểm M di động trên (S) và điểm N di động trên (P). Tính độ dài ngắn nhất của đoạn thẳng MN. Xác định vị trí của M, N tương ứng. (1 + i) 2009Câu VII.b (1 điểm) Giải phương trình: z 2 − 2. z + 2i = 0 trên tập số phức. (1 − i ) 2008 www.MATHVN.com Trang 22- www.MATHVN.com Hướng dẫn Đề số 22 x 2 y m 4Câu I: 2) Ta có: y’ = 3x2 + 6x = 0 x 0 y m Vậy hàm số có hai điểm cực trị A(0 ; m) và B(2 ; m + 4) uuu r uuu r 1 . Để ·AOB 120 thì Ta có: 0 cos AOB OA (0; m), OB ( 2; m 4) 2 4 m 0 ...
Tìm kiếm theo từ khóa liên quan:
ôn thi tốt nghiệp luyện thi đại học toán nâng cao đề thi toán đề thi học sinh giỏi toán chuyênTài liệu liên quan:
-
8 trang 407 0 0
-
Bộ đề thi học sinh giỏi môn Lịch sử lớp 12 cấp tỉnh năm 2020-2021 có đáp án
26 trang 380 0 0 -
7 trang 358 0 0
-
Đề thi học sinh giỏi môn GDCD lớp 12 năm 2023-2024 có đáp án - Trường THPT Mai Anh Tuấn, Thanh Hóa
28 trang 315 0 0 -
8 trang 309 0 0
-
Ebook Bồi dưỡng học sinh giỏi Tiếng Anh lớp 5 theo chuyên đề
138 trang 275 0 0 -
Đề thi học sinh giỏi môn Ngữ văn lớp 6 năm 2022-2023 có đáp án - Trường THCS Ninh An
8 trang 273 0 0 -
8 trang 257 0 0
-
Đề thi học sinh giỏi môn Ngữ văn lớp 8 năm 2021-2022 có đáp án - Phòng GD&ĐT Châu Đức
4 trang 247 0 0 -
Đề thi học sinh giỏi cấp tỉnh môn Vật lý THPT năm 2023-2024 có đáp án - Sở GD&ĐT Vĩnh Long
6 trang 241 0 0