ĐỀ THI THỬ ĐH&CĐ LÀNI NĂM HỌC 2010-2011 MÔN TOÁN-KHỐI A+B- TRƯỜNG THPT NGUYỄN TRUNG THIÊN
Số trang: 5
Loại file: pdf
Dung lượng: 428.12 KB
Lượt xem: 7
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tham khảo tài liệu đề thi thử đh&cđ làni năm học 2010-2011 môn toán-khối a+b- trường thpt nguyễn trung thiên, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
ĐỀ THI THỬ ĐH&CĐ LÀNI NĂM HỌC 2010-2011 MÔN TOÁN-KHỐI A+B- TRƯỜNG THPT NGUYỄN TRUNG THIÊN http://ductam_tp.violet.vn/ ĐỀ THI THỬ ĐH&CĐ LÀNI NĂM HỌC 2010-2011TRƯỜNG THPT NGUYỄN TRUNG THIÊN MÔN TOÁN-KHỐI A+B: (180 phút)-----------------------@--------------------------- --------------------------------------@----------------------------------- (Không kể thời gian phát đề) A.PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm): y x 3 3mx 2 3(m 2 1) x m3 m (1) Câu I (2 điểm): Cho hàm số 1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) ứng với m=1 2.Tìm m để hàm số (1) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số đến góc tọa độ O bằng 2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến góc tọa độ O. Câu II (2 điểm): 2cos3x.cosx+ 3(1 s in2x)=2 3cos 2 (2 x ) 1. Giải phương trình : 4 2. Giải phương trình : log 2 (5 2 x) log 2 (5 2 x).log 2 x 1 (5 2 x) log 2 (2 x 5) 2 log 2 (2 x 1).log 2 (5 2 x) 1 2 tan( x ) 6 4 dx Câu III (1 điểm): I Tính tích phân : cos2x 0 Câu IV (1 điểm): Cho hình chóp S.ABCD có đáy là hình vuông cạnh a , SA vuông góc với đáy và SA=a .Gọi M,N lần lượt là trung điểm của SB và SD;I là giao điểm của SD và mặt phẳng (AMN). Chứng minh SD vuông góc với AI và tính thể tích khối chóp MBAI. Câu V (1 điểm): Cho x,y,z là ba số thực dương có tổng bằng 3.Tìm giá trị nhỏ nhất của biểu thức P 3( x 2 y 2 z 2 ) 2 xyz . B. PHẦN TỰ CHỌN (3 điểm): Thí sinh chỉ được chọn một trong hai phàn (phần 1 hoặc 2) 1.Theo chương trình chuẩn: Câu VIa (2 điểm): 1. Trong mặt phẳng với hệ toạ đ ộ Oxy cho điểm C(2;-5 ) và đường thẳng : 3 x 4 y 4 0 . Tìm trên hai điểm A và B đối xứng nhau qua I(2;5/2) sao cho diện tích tam giác ABC bằng15. 2. Trong không gian với hệ toạ độ Oxyz cho mặt cầu ( S ) : x 2 y 2 z 2 2 x 6 y 4 z 2 0 . r Viết phương trình mặt phẳng (P) song song với giá của véc tơ v (1;6; 2) , vuông góc với mặt phẳng ( ) : x 4 y z 11 0 và tiếp xúc với (S). Câu VIIa(1 điểm): Tìm hệ số của x 4 trong khai triển Niutơn của biểu thức : P (1 2 x 3 x 2 )10 2.Theo chương trình nâng cao: Câu VIb (2 điểm): x2 y 2 1.Trong mặt phẳng với hệ toạ độ Oxy cho elíp ( E ) : 1 và hai điểm A(3;-2) , B(-3;2) . 9 4 Tìm trên (E) điểm C có hoành độ và tung độ dương sao cho tam giác ABC có diện tích lớn nhất. 2.Trong không gian với hệ toạ độ Oxyz cho mặt cầu ( S ) : x 2 y 2 z 2 2 x 6 y 4 z 2 0 . r Viết phương trình mặt phẳng (P) song song với giá của véc tơ v (1;6; 2) , vuông góc với mặt phẳng ( ) : x 4 y z 11 0 và tiếp xúc với (S). Câu VIIb (1 điểm): 2 1 22 2 2n n 121 0 Tìm số nguyên dương n sao cho thoả mãn Cn Cn Cn ... Cn n 1 n 1 2 3 -------------------------------------------------------HẾT-------------------------------------------------------- Cán bộ coi thi không g ải thích gì thêm Họ tên thí sinh:.................................................... Số báo danh:.............................. ...
Nội dung trích xuất từ tài liệu:
ĐỀ THI THỬ ĐH&CĐ LÀNI NĂM HỌC 2010-2011 MÔN TOÁN-KHỐI A+B- TRƯỜNG THPT NGUYỄN TRUNG THIÊN http://ductam_tp.violet.vn/ ĐỀ THI THỬ ĐH&CĐ LÀNI NĂM HỌC 2010-2011TRƯỜNG THPT NGUYỄN TRUNG THIÊN MÔN TOÁN-KHỐI A+B: (180 phút)-----------------------@--------------------------- --------------------------------------@----------------------------------- (Không kể thời gian phát đề) A.PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm): y x 3 3mx 2 3(m 2 1) x m3 m (1) Câu I (2 điểm): Cho hàm số 1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) ứng với m=1 2.Tìm m để hàm số (1) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số đến góc tọa độ O bằng 2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến góc tọa độ O. Câu II (2 điểm): 2cos3x.cosx+ 3(1 s in2x)=2 3cos 2 (2 x ) 1. Giải phương trình : 4 2. Giải phương trình : log 2 (5 2 x) log 2 (5 2 x).log 2 x 1 (5 2 x) log 2 (2 x 5) 2 log 2 (2 x 1).log 2 (5 2 x) 1 2 tan( x ) 6 4 dx Câu III (1 điểm): I Tính tích phân : cos2x 0 Câu IV (1 điểm): Cho hình chóp S.ABCD có đáy là hình vuông cạnh a , SA vuông góc với đáy và SA=a .Gọi M,N lần lượt là trung điểm của SB và SD;I là giao điểm của SD và mặt phẳng (AMN). Chứng minh SD vuông góc với AI và tính thể tích khối chóp MBAI. Câu V (1 điểm): Cho x,y,z là ba số thực dương có tổng bằng 3.Tìm giá trị nhỏ nhất của biểu thức P 3( x 2 y 2 z 2 ) 2 xyz . B. PHẦN TỰ CHỌN (3 điểm): Thí sinh chỉ được chọn một trong hai phàn (phần 1 hoặc 2) 1.Theo chương trình chuẩn: Câu VIa (2 điểm): 1. Trong mặt phẳng với hệ toạ đ ộ Oxy cho điểm C(2;-5 ) và đường thẳng : 3 x 4 y 4 0 . Tìm trên hai điểm A và B đối xứng nhau qua I(2;5/2) sao cho diện tích tam giác ABC bằng15. 2. Trong không gian với hệ toạ độ Oxyz cho mặt cầu ( S ) : x 2 y 2 z 2 2 x 6 y 4 z 2 0 . r Viết phương trình mặt phẳng (P) song song với giá của véc tơ v (1;6; 2) , vuông góc với mặt phẳng ( ) : x 4 y z 11 0 và tiếp xúc với (S). Câu VIIa(1 điểm): Tìm hệ số của x 4 trong khai triển Niutơn của biểu thức : P (1 2 x 3 x 2 )10 2.Theo chương trình nâng cao: Câu VIb (2 điểm): x2 y 2 1.Trong mặt phẳng với hệ toạ độ Oxy cho elíp ( E ) : 1 và hai điểm A(3;-2) , B(-3;2) . 9 4 Tìm trên (E) điểm C có hoành độ và tung độ dương sao cho tam giác ABC có diện tích lớn nhất. 2.Trong không gian với hệ toạ độ Oxyz cho mặt cầu ( S ) : x 2 y 2 z 2 2 x 6 y 4 z 2 0 . r Viết phương trình mặt phẳng (P) song song với giá của véc tơ v (1;6; 2) , vuông góc với mặt phẳng ( ) : x 4 y z 11 0 và tiếp xúc với (S). Câu VIIb (1 điểm): 2 1 22 2 2n n 121 0 Tìm số nguyên dương n sao cho thoả mãn Cn Cn Cn ... Cn n 1 n 1 2 3 -------------------------------------------------------HẾT-------------------------------------------------------- Cán bộ coi thi không g ải thích gì thêm Họ tên thí sinh:.................................................... Số báo danh:.............................. ...
Tìm kiếm theo từ khóa liên quan:
ôn thi tốt nghiệp luyện thi đại học toán nâng cao đề thi toán đề thi học sinh giỏi toán chuyênGợi ý tài liệu liên quan:
-
8 trang 393 0 0
-
Bộ đề thi học sinh giỏi môn Lịch sử lớp 12 cấp tỉnh năm 2020-2021 có đáp án
26 trang 358 0 0 -
7 trang 350 0 0
-
Đề thi học sinh giỏi môn GDCD lớp 12 năm 2023-2024 có đáp án - Trường THPT Mai Anh Tuấn, Thanh Hóa
28 trang 309 0 0 -
8 trang 307 0 0
-
Ebook Bồi dưỡng học sinh giỏi Tiếng Anh lớp 5 theo chuyên đề
138 trang 272 0 0 -
Đề thi học sinh giỏi môn Ngữ văn lớp 6 năm 2022-2023 có đáp án - Trường THCS Ninh An
8 trang 262 0 0 -
8 trang 248 0 0
-
Đề thi học sinh giỏi môn Ngữ văn lớp 8 năm 2021-2022 có đáp án - Phòng GD&ĐT Châu Đức
4 trang 245 0 0 -
Đề thi học sinh giỏi cấp tỉnh môn Vật lý THPT năm 2023-2024 có đáp án - Sở GD&ĐT Vĩnh Long
6 trang 236 0 0