Đề thi thử ĐH môn Toán lần 2 khối A, B năm 2011 trường thpt chuyên Lê Quý Đôn
Số trang: 5
Loại file: pdf
Dung lượng: 155.36 KB
Lượt xem: 7
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tham khảo tài liệu đề thi thử đh môn toán lần 2 khối a, b năm 2011 trường thpt chuyên lê quý đôn, các câu hỏi bám sát khung chương trình ôn tập môn Toán sẽ giúp bạn vững kiến thức làm bài thi đạt điểm cao.
Nội dung trích xuất từ tài liệu:
Đề thi thử ĐH môn Toán lần 2 khối A, B năm 2011 trường thpt chuyên Lê Quý ĐônTRƯ NG THPT CHUYÊN ð THI TH ð I H C, CAO ð NG NĂM 2011 LÊ QUÝ ðÔN Môn thi: TOÁN, kh i A, B L n II Th i gian làm bài 180 phút, không k th i gian giao ñCâu I: (2,0 ñi m) 2x − 4 y= (C ) . Cho hàm s x +1 1. Kh o sát s bi n thiên và v ñ th (C) c a hàm s . 2. G i M là m t ñi m b t kì trên ñ th (C), ti p tuy n t i M c t các ti m c n c a (C) t i A, B. CMR di n tích tam giác ABI (I là giao c a hai ti m c n) không ph thu c vào v trí c a M.Câu II: (3,0 ñi m) 1. Gi i h phương trình: 2 2 xy x + y + x + y = 1 2 x + y = x2 − y π 2. Gi i phương trình: 2sin 2 x − = 2sin x − t anx . 2 4 ( ) ( ) x 2 + 1 + x > log 3 log 1 x2 + 1 − x 3. Gi i b t phương trình: log 1 log 5 3 5Câu III: (2,0 ñi m) ln x 3 2 + ln 2 x e 1. Tính tích phân: I = ∫ dx . x 1 2. Cho t p A = {0;1;2;3;4;5} , t A có th l p ñư c bao nhiêu s t nhiên g m 5 ch s khác nhau, trong ñó nh t thi t ph i có ch s 0 và 3.Câu IV: (2,0 ñi m) 1. Vi t phương trình ñư ng tròn ñi qua hai ñi m A(2; 5), B(4;1) và ti p xúc v i ñư ng th ng có phương trình 3x – y + 9 = 0. 2. Cho hình lăng tr tam giác ABC.A’B’C’ v i A’.ABC là hình chóp tam giác ñ u c nh ñáy AB = a; c nh bên AA’ = b. G i α là góc gi a hai mp(ABC) và mp(A’BC). Tính tan α và th tích chóp A’.BCC’B’.Câu V: (1,0 ñi m) Cho x > 0, y > 0, x + y = 1. Tìm giá tr nh nh t c a bi u th c x y T= + 1− x 1− y……………………………………………….H t…………………………………………………. http://ebook.here.vn – Download Bài gi ng – ð thi mi n phí ðÁP ÁN ð THI TH ð I H C L N 2 A, B NĂM 2011Câu Ý N i dung ði m I 2 1 Kh o sát s bi n thiên và v ñ th (C) c a hàm s (1,00 ñi m) -T p xác ñ nh: R\{-1} 6 -S bi n thiên: y = 2 > 0∀x ≠ −1 . Suy ra hàm s ñ ng bi n trên các kho ng xác 0.25 ( x + 1) ñ nh c a hàm s . - lim y = m∞ → x = −1 là ti m c n ñ ng ± x →( −1) 0.25 - lim y = 2 → y = 2 là ti m c n ngang x →±∞ -B ng bi n thiên -1 -∞ x +∞ + + y +∞ 0.25 2 2 y -∞ -ð th y 2 I 0.25 12 x -1 -4 2 Tìm c p ñi m ñ i x ng….(1,00 ñi m) 2a − 4 0.25 ∈ ( C ) a ≠ −1 G i M a; a +1 2a − 4 6 2 ( x − a) + Ti p tuy n t i M có phương trình: y = ( a + 1) a +1 0.25 2a − 10 Giao ñi m v i ti m c n ñ ng x = −1 là A −1; a +1 Giao ñi m v i ti m c n ngang y = 2 là B ( 2a + 1;2 ) 0.25 Giao hai ti m c n I(-1; 2) ...
Nội dung trích xuất từ tài liệu:
Đề thi thử ĐH môn Toán lần 2 khối A, B năm 2011 trường thpt chuyên Lê Quý ĐônTRƯ NG THPT CHUYÊN ð THI TH ð I H C, CAO ð NG NĂM 2011 LÊ QUÝ ðÔN Môn thi: TOÁN, kh i A, B L n II Th i gian làm bài 180 phút, không k th i gian giao ñCâu I: (2,0 ñi m) 2x − 4 y= (C ) . Cho hàm s x +1 1. Kh o sát s bi n thiên và v ñ th (C) c a hàm s . 2. G i M là m t ñi m b t kì trên ñ th (C), ti p tuy n t i M c t các ti m c n c a (C) t i A, B. CMR di n tích tam giác ABI (I là giao c a hai ti m c n) không ph thu c vào v trí c a M.Câu II: (3,0 ñi m) 1. Gi i h phương trình: 2 2 xy x + y + x + y = 1 2 x + y = x2 − y π 2. Gi i phương trình: 2sin 2 x − = 2sin x − t anx . 2 4 ( ) ( ) x 2 + 1 + x > log 3 log 1 x2 + 1 − x 3. Gi i b t phương trình: log 1 log 5 3 5Câu III: (2,0 ñi m) ln x 3 2 + ln 2 x e 1. Tính tích phân: I = ∫ dx . x 1 2. Cho t p A = {0;1;2;3;4;5} , t A có th l p ñư c bao nhiêu s t nhiên g m 5 ch s khác nhau, trong ñó nh t thi t ph i có ch s 0 và 3.Câu IV: (2,0 ñi m) 1. Vi t phương trình ñư ng tròn ñi qua hai ñi m A(2; 5), B(4;1) và ti p xúc v i ñư ng th ng có phương trình 3x – y + 9 = 0. 2. Cho hình lăng tr tam giác ABC.A’B’C’ v i A’.ABC là hình chóp tam giác ñ u c nh ñáy AB = a; c nh bên AA’ = b. G i α là góc gi a hai mp(ABC) và mp(A’BC). Tính tan α và th tích chóp A’.BCC’B’.Câu V: (1,0 ñi m) Cho x > 0, y > 0, x + y = 1. Tìm giá tr nh nh t c a bi u th c x y T= + 1− x 1− y……………………………………………….H t…………………………………………………. http://ebook.here.vn – Download Bài gi ng – ð thi mi n phí ðÁP ÁN ð THI TH ð I H C L N 2 A, B NĂM 2011Câu Ý N i dung ði m I 2 1 Kh o sát s bi n thiên và v ñ th (C) c a hàm s (1,00 ñi m) -T p xác ñ nh: R\{-1} 6 -S bi n thiên: y = 2 > 0∀x ≠ −1 . Suy ra hàm s ñ ng bi n trên các kho ng xác 0.25 ( x + 1) ñ nh c a hàm s . - lim y = m∞ → x = −1 là ti m c n ñ ng ± x →( −1) 0.25 - lim y = 2 → y = 2 là ti m c n ngang x →±∞ -B ng bi n thiên -1 -∞ x +∞ + + y +∞ 0.25 2 2 y -∞ -ð th y 2 I 0.25 12 x -1 -4 2 Tìm c p ñi m ñ i x ng….(1,00 ñi m) 2a − 4 0.25 ∈ ( C ) a ≠ −1 G i M a; a +1 2a − 4 6 2 ( x − a) + Ti p tuy n t i M có phương trình: y = ( a + 1) a +1 0.25 2a − 10 Giao ñi m v i ti m c n ñ ng x = −1 là A −1; a +1 Giao ñi m v i ti m c n ngang y = 2 là B ( 2a + 1;2 ) 0.25 Giao hai ti m c n I(-1; 2) ...
Tìm kiếm theo từ khóa liên quan:
Đề thi thử môn Toán Đề thi thử đại học Đề thi thử đại học Khối A Đề thi thử đại học môn Toán Khảo sát hàm số Bất phương trình Tính tích phânGợi ý tài liệu liên quan:
-
Đề thi khảo sát chất lượng hóa học 12 dự thi đại học 2014 - Trường THPT chuyên ĐH KHTN - Mã đề 179
10 trang 113 0 0 -
Đề thi thử đại học môn Vật lý - Khối A, A1, V: Đề số 7
5 trang 96 0 0 -
133 trang 60 0 0
-
chinh phục điểm câu hỏi phụ khảo sát hàm số từ a đến z: phần 1 - nxb Đại học quốc gia hà nội
162 trang 44 0 0 -
Ôn thi THPT Quốc gia môn Toán (Tập 3)
335 trang 41 0 0 -
150 đề thi thử đại học môn Toán
155 trang 38 0 0 -
11 trang 36 0 0
-
Trắc nghiệm sinh học phần kỹ thuật di truyền + đáp án
6 trang 33 0 0 -
Đề thi chọn học sinh giỏi tỉnh Phú Yên
5 trang 32 0 0 -
3 Đề thi thử ĐH môn Toán - Sở GD&ĐT Bắc Ninh năm 2014 khối A, B, D
17 trang 30 0 0