Đề thi thử ĐH Toán lần 1 (2013 - 2014) khối B - THPT Chuyên Quốc Học-Huế (Kèm đáp án)
Số trang: 6
Loại file: pdf
Dung lượng: 186.42 KB
Lượt xem: 11
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Để học sinh xem xét đánh giá khả năng tiếp thu bài và nhận biết năng lực của bản thân về môn Toán, mời các bạn tham khảo đề thi thử Đại học lần 1 Toán 2014 khối B của trường THPT Quốc Học-Huế có kèm theo hướng dẫn giải.
Nội dung trích xuất từ tài liệu:
Đề thi thử ĐH Toán lần 1 (2013 - 2014) khối B - THPT Chuyên Quốc Học-Huế (Kèm đáp án) www.VNMATH.comTRƯỜNG THPT CHUYÊN QUỐC HỌC – HUẾ ĐỀ THI THỬ ĐẠI HỌC LẦN 1 Tổ Toán Môn: TOÁN; khối B – Năm học: 2013 - 2014 Thời gian: 180 phút (không kể thời gian phát đề) ---------------------------------I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)Câu 1 (2,0 điểm). Cho hàm số y = x3 − 3x + 2 . a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. b) Gọi d là đường thẳng đi qua A ( 2;4 ) và có hệ số góc là k . Tìm k để d cắt (C) tại ba điểm phân biệt A, B, C sao cho tam giác OBC cân tại O (với O là gốc tọa độ). 2 cos 2 xCâu 2 (1,0 điểm). Giải phương trình: cot x = − ( x ∈ ») . sin 2 x cos x 3 3 x − 2 y = x + 4 yCâu 3 (1,0 điểm). Giải hệ phương trình: 2 2 ( x; y ∈ » ) . 13 x − 41xy + 21 y = −9 Câu 4 (1,0 điểm). Tính các giới hạn sau: 3 a) lim ( x + 4 ) sin . x →+∞ x 3 2 x − 3. 3 x − 5 − 1 b) lim . x →2 x −2Câu 5 (1,0 điểm). Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A; AB = AC = a. Gọi M là trung điểm củacạnh AB, hình chiếu vuông góc của đỉnh S lên mặt phẳng (ABC) trùng với điểm O là tâm đường tròn ngoại tiếp tamgiác BMC. Góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 60o. Tính theo a thể tích khối chóp S.ABC và khoảngcách từ điểm C đến mặt phẳng (SAB).Câu 6 (1,0 điểm). Cho x ; y ; z là các số thực dương thay đổi sao cho x + y + z = 2 . Tìm giá trị nhỏ nhất của biểu thức: F = x 2 + y 2 + z 2 + 2 xyz .II. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần ( phần A hoặc phần B)A. Theo chương trình ChuẩnCâu 7a (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho hình thoi ABCD. Các đỉnh B và D lần lượt thuộc cácđường thẳng d1 : x + y − 8 = 0 và d2 : x − 2 y + 3 = 0 . Đường thẳng AC có phương trình là x + 7 y − 31 = 0 . Tìm tọa độcác đỉnh của hình thoi ABCD biết diện tích hình thoi ABCD bằng 75 và điểm A có hoành độ âm. log5 3 9 x −1 + 7 − 1 log5 3x−1 +1 ( ) . Tìm các số thực x biết rằng số hạng chứa a3 trong khaiCâu 8a (1,0 điểm). Cho a = 5 và b =5 5 8triển Niu-tơn của ( a + b ) là 224. 2 2Câu 9a (1,0 điểm). Tìm các số thực m để bất phương trình 4 x −2 x + m.2 x −2 x +1 + m ≤ 0 nghiệm đúng với mọi x ∈ [0;2 ] .A. Theo chương trình Nâng caoCâu 7b (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có C ( 4;3) ; đường phân giác trong vàđường trung tuyến kẻ từ đỉnh A của tam giác lần lượt có phương trình là x + 2 y − 5 = 0 và 4 x + 13 y − 10 = 0 . Viếtphương trình các đường thẳng chứa các cạnh của tam giác ABC.Câu 8b (1,0 điểm). Chứng minh rằng: 12 C2013 + 2 2 C2013 + ... + 2012 2 C2013 + 20132 C2013 = 2013 × 2014 × 2 2011 . 1 2 2012 2013Câu 9b (1,0 điểm). Tìm các số thực m để phương trình m 2 x 2 + 9 = x + m có đúng một nghiệm thực. -------------HẾT-------------Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.Họ và tên thí sinh:…………………………………………..Số báo danh:………… TRƯỜNG THPT CHUYÊN QUỐC HỌC www.VNMATH.com ĐÁP ÁN THỬ ĐẠI HỌC LẦN 1 Tổ Toán Môn: TOÁN; khối B – Năm học: 2013 - 2014 -------------------------------------------------------------------------------------------------------------------------------Câu Đáp án Điểm 1a • Tập xác định: D = » • Sự biến thiên: 0,25 2 ...
Nội dung trích xuất từ tài liệu:
Đề thi thử ĐH Toán lần 1 (2013 - 2014) khối B - THPT Chuyên Quốc Học-Huế (Kèm đáp án) www.VNMATH.comTRƯỜNG THPT CHUYÊN QUỐC HỌC – HUẾ ĐỀ THI THỬ ĐẠI HỌC LẦN 1 Tổ Toán Môn: TOÁN; khối B – Năm học: 2013 - 2014 Thời gian: 180 phút (không kể thời gian phát đề) ---------------------------------I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)Câu 1 (2,0 điểm). Cho hàm số y = x3 − 3x + 2 . a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. b) Gọi d là đường thẳng đi qua A ( 2;4 ) và có hệ số góc là k . Tìm k để d cắt (C) tại ba điểm phân biệt A, B, C sao cho tam giác OBC cân tại O (với O là gốc tọa độ). 2 cos 2 xCâu 2 (1,0 điểm). Giải phương trình: cot x = − ( x ∈ ») . sin 2 x cos x 3 3 x − 2 y = x + 4 yCâu 3 (1,0 điểm). Giải hệ phương trình: 2 2 ( x; y ∈ » ) . 13 x − 41xy + 21 y = −9 Câu 4 (1,0 điểm). Tính các giới hạn sau: 3 a) lim ( x + 4 ) sin . x →+∞ x 3 2 x − 3. 3 x − 5 − 1 b) lim . x →2 x −2Câu 5 (1,0 điểm). Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A; AB = AC = a. Gọi M là trung điểm củacạnh AB, hình chiếu vuông góc của đỉnh S lên mặt phẳng (ABC) trùng với điểm O là tâm đường tròn ngoại tiếp tamgiác BMC. Góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 60o. Tính theo a thể tích khối chóp S.ABC và khoảngcách từ điểm C đến mặt phẳng (SAB).Câu 6 (1,0 điểm). Cho x ; y ; z là các số thực dương thay đổi sao cho x + y + z = 2 . Tìm giá trị nhỏ nhất của biểu thức: F = x 2 + y 2 + z 2 + 2 xyz .II. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần ( phần A hoặc phần B)A. Theo chương trình ChuẩnCâu 7a (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho hình thoi ABCD. Các đỉnh B và D lần lượt thuộc cácđường thẳng d1 : x + y − 8 = 0 và d2 : x − 2 y + 3 = 0 . Đường thẳng AC có phương trình là x + 7 y − 31 = 0 . Tìm tọa độcác đỉnh của hình thoi ABCD biết diện tích hình thoi ABCD bằng 75 và điểm A có hoành độ âm. log5 3 9 x −1 + 7 − 1 log5 3x−1 +1 ( ) . Tìm các số thực x biết rằng số hạng chứa a3 trong khaiCâu 8a (1,0 điểm). Cho a = 5 và b =5 5 8triển Niu-tơn của ( a + b ) là 224. 2 2Câu 9a (1,0 điểm). Tìm các số thực m để bất phương trình 4 x −2 x + m.2 x −2 x +1 + m ≤ 0 nghiệm đúng với mọi x ∈ [0;2 ] .A. Theo chương trình Nâng caoCâu 7b (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có C ( 4;3) ; đường phân giác trong vàđường trung tuyến kẻ từ đỉnh A của tam giác lần lượt có phương trình là x + 2 y − 5 = 0 và 4 x + 13 y − 10 = 0 . Viếtphương trình các đường thẳng chứa các cạnh của tam giác ABC.Câu 8b (1,0 điểm). Chứng minh rằng: 12 C2013 + 2 2 C2013 + ... + 2012 2 C2013 + 20132 C2013 = 2013 × 2014 × 2 2011 . 1 2 2012 2013Câu 9b (1,0 điểm). Tìm các số thực m để phương trình m 2 x 2 + 9 = x + m có đúng một nghiệm thực. -------------HẾT-------------Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.Họ và tên thí sinh:…………………………………………..Số báo danh:………… TRƯỜNG THPT CHUYÊN QUỐC HỌC www.VNMATH.com ĐÁP ÁN THỬ ĐẠI HỌC LẦN 1 Tổ Toán Môn: TOÁN; khối B – Năm học: 2013 - 2014 -------------------------------------------------------------------------------------------------------------------------------Câu Đáp án Điểm 1a • Tập xác định: D = » • Sự biến thiên: 0,25 2 ...
Tìm kiếm theo từ khóa liên quan:
Đồ thị hàm số Hệ phương trình Đề luyện thi Đại học môn Toán Đề thi thử khối B môn Toán Đề thi thử Đại học năm 2014 Đề ôn thi Đại học khối BGợi ý tài liệu liên quan:
-
9 trang 462 0 0
-
Đề thi học sinh giỏi môn Toán lớp 12 năm 2023-2024 có đáp án - Trường THPT Mai Anh Tuấn, Thanh Hóa
9 trang 186 0 0 -
Chuyên đề phát triển VD - VDC: Đề tham khảo thi TN THPT năm 2023 môn Toán
529 trang 102 0 0 -
Bộ đề thi vào lớp 10 môn Toán các tỉnh năm học 2023-2024
288 trang 102 0 0 -
Đề thi học sinh giỏi cấp tỉnh môn Toán THPT năm 2023-2024 có đáp án - Sở GD&ĐT Vĩnh Long
4 trang 76 6 0 -
Đề thi giữa học kì 1 môn Toán lớp 9 năm 2023-2024 có đáp án - Trường THCS Quang Trung, Tiên Phước
10 trang 61 0 0 -
Đề cương ôn tập giữa học kì 1 môn Toán lớp 11 năm 2022-2023 - Trường THPT Uông Bí
14 trang 59 0 0 -
39 trang 57 0 0
-
Tài liệu ôn tập học kì 1 môn Toán lớp 10 năm 2023-2024 - Trường THPT Trần Phú, Đà Nẵng
21 trang 51 0 0 -
Đề thi học kì 1 môn Toán lớp 9 năm 2023-2024 có đáp án - Trường THCS Minh Đức (Đề tham khảo 02)
6 trang 46 0 0