Danh mục

Đề thi thử ĐH và CĐ môn Toán năm 2012 đề 78

Số trang: 5      Loại file: pdf      Dung lượng: 203.89 KB      Lượt xem: 7      Lượt tải: 0    
Jamona

Hỗ trợ phí lưu trữ khi tải xuống: miễn phí Tải xuống file đầy đủ (5 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo đề thi thử ĐH và CĐ môn Toán năm 2012 đề 78 dành cho các em học sinh đang chuẩn bị cho kỳ thi tuyển sinh Đại học, với đề thi này các em sẽ được làm quen với cấu trúc đề thi và củng cố lại kiến thức căn bản nhất.
Nội dung trích xuất từ tài liệu:
Đề thi thử ĐH và CĐ môn Toán năm 2012 đề 78Đề thi thử đại học môn toán Ôn thi Đại học ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012 Môn thi : TOÁN (ĐỀ 78)I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)Câu I. (2,0 điểm) Cho hàm số y =  x3  3x2 + mx + 4, trong đó m là tham số thực. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho, với m = 0. 2. Tìm tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trên khoảng (0 ; + ).Câu II. (2,0 điểm) 1. Giải phương trình: 3 (2cos2x + cosx – 2) + (3 – 2cosx)sinx = 0 2. Giải phương trình: log 2 (x  2)  log 4 (x  5) 2  log 1 8  0 2Câu III. (1,0 điểm) Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = e x  1 , trục hoành và hai đường thẳng x = ln3, x = ln8.Câu VI. (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = SB = a, mặt phẳng (SAB) vuông góc với mặt phẳng (ABCD). Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD.Câu V. (1,0 điểm) Xét các số thực dương x, y, z thỏa mãn điều kiện x + y + z = 1. x 2 (y  z) y 2 (z  x) z 2 (x  y) Tìm giá trị nhỏ nhất của biểu thức: P    yz zx xzII. PHẦN RIÊNG (3,0 điểm)Thí sinh chỉ được chọn làm một trong hai phần (phần 1 hoặc phần 2)1. Theo chương trình Chuẩn:Câu VIa. (2,0 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) có phương trình: x2 + y2 – 6x + 5 = 0. Tìm điểm M thuộc trục tung sao cho qua M kẻ được hai tiếp tuyến với (C) mà góc giữa hai tiếp tuyến đó bằng 600 . 2. Trong không gian với hệ tọa độ Oxyz, cho điểm M(2 ; 1 ; 0) và đường thẳng d có phương trình:  x  1  2t   y  1  t z   t  Viết phương trình tham số của đường thẳng đi qua điểm M, cắt và vuông góc với đường thẳng d.Câu VIIa. (1,0 điểm) Tìm hệ số của x2 trong khai triển thành đa thức của biểu thức P = (x2 + x – 1) 62. Theo chương trình Nâng caoCâu VIb. (2,0 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) có phương trình: x2 + y2 – 6x + 5 = 0. Tìm điểm M thuộc trục tung sao cho qua M kẻ được hai tiếp tuyến với (C) mà góc giữa hai tiếp tuyến đó bằng 600. 2. Trong không gian với hệ tọa độ Oxyz, cho điểm M(2 ; 1 ; 0) và đường thẳng d có phương trình: x 1 y 1 z   . 2 1 1 Viết phương trình chính tắc của đường thẳng đi qua điểm M, cắt và vuông góc với đường thẳng d.Câu VIIb. (1,0 điểm) Tìm hệ số của x3 trong khai triển thành đa thức của biểu thức P = (x2 + x – 1)5 1Đề thi thử đại học môn toán Ôn thi Đại học ……………………Hết……………………ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN ( ĐỀ 78 )Câu Đáp án Điểm I 1. (1,25 điểm) (2,0 Với m = 0, ta có hàm số y = – x3 – 3x2 + 4điểm) Tập xác định: D = Sự biến thiên:  x  2  Chiều biến thiên: y’ = – 3x2 – 6x, y’ = 0   x  0 0,50  x  2 y’ < 0   x  0 y’ > 0  – 2 < x < 0 Do đó: + Hàm số nghịch biến trên mỗi khoảng (  ;  2) và (0 ; + ) + Hàm số đồng biến trên khoảng ( 2 ; 0)  Cực trị: + Hàm số y đạt cực tiểu tại x = – 2 và yCT = y(–2) = 0; + Hàm số y đạt cực đại tại x = 0 và yCĐ = y(0) = 4. 0,25  Giới hạn: lim   , lim   x  x   Bảng biến thiên: x  2 0 ...

Tài liệu được xem nhiều:

Tài liệu liên quan: