Đề thi thử tốt nghiệp THPT môn Toán - THPT Lương Thế Vinh năm 2014 đề 17
Số trang: 6
Loại file: pdf
Dung lượng: 211.26 KB
Lượt xem: 8
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Cùng tham khảo đề thi thử tốt nghiệp THPT môn Toán - THPT Lương Thế Vinh năm 2014 đề 17 sẽ giúp bạn định hướng kiến thức ôn tập và rèn luyện kỹ năng, tư duy làm bài thi đạt điểm cao.
Nội dung trích xuất từ tài liệu:
Đề thi thử tốt nghiệp THPT môn Toán - THPT Lương Thế Vinh năm 2014 đề 17 TRƯỜNG THPT LƯƠNG THẾ VINH KỲ THI TỐT NGHIỆP THPT ĐỀ THI THỬ TỐT NGHIỆP Môn thi: TOÁN − Giáo dục trung học phổ thông Đề số 17 Thời gian làm bài: 150 phút, không kể thời gian giao đề ------------------------------ ---------------------------------------------------I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) x 2 (x - 3)Câu I (3,0 điểm): Cho hàm số: y = 2 1) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số. 2) Viết phương trình tiếp tuyến của (C ) tại giao điểm của (C ) với trục hoành. 3) Tìm điều kiện của k để phương trình sau đây có nghiệm duy nhất: x 3 - 3x 2 - k = 0 .Câu II (3,0 điểm): 2x 2 + 6x - 6 1) Giải phương trình: ( 2) = 2.4x + 1 3 x3 2) Tính tích phân: I = ò0 2 dx x +1 3) Tìm giá trị lớn nhất và nhỏ nhất của hàm số: y = x 5 - x 4 - 3x 3 + 9 trên đoạn [- 2;1]Câu III (1,0 điểm): Cho khối chóp S.ABC có ABC và SBC là các tam giác đều có cạnh bằng 2, SA = a 3 . Tính thể tích khối chóp S.ABC theo a.II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần dưới đây1. Theo chương trình chuẩnCâu IVa (2,0 điểm): Trong không gian với hệ toạ độ Oxyz, cho tam giác ABC có toạ độ các đỉnh: A(1;1;2), B(0;1;1) và C(1;0;4). 1) Chứng minh ABC là tam giác vuông. Xác định toạ độ điểm D để bốn điểm A,B,C,D là bốn đỉnh của một hình chữ nhật. uuur uuur 2) Gọi M là điểm thoả MB = 2 MC . Viết phương trình mặt phẳng (P) đi qua điểm M và vuông góc với đường thẳng BC. Viết phương trình mặt cầu tâm A, tiếp xúc với mp(P).Câu Va (1,0 điểm): Tính diện tích hình phẳng giới hạn bởi các đường sau đây: y = x (x - 1)2 , y = x 2 + x và x = - 12. Theo chương trình nâng caoCâu IVb (2,0 điểm): Trong không gian với hệ toạ độ Oxyz, cho điểm M (1; 2; –3) và đường thẳng x- 3 y+1 z- 1 d: = = 2 1 2 1) Tìm toạ độ hình chiếu vuông góc của điểm M lên đường thẳng d. Viết phương trình mặt cầu tâm M, tiếp xúc với d. 2) Viết phương trình mp(P) đi qua điểm M, song song với d và cách d một khoảng bằng 4.Câu Vb (1,0 điểm): Cho số phức z = 1 + 3i . Hãy viết dạng lượng giác của số phức z 5 . ---------- Hết ---------- Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm.Họ và tên thí sinh: ........................................ Số báo danh:...............................................Chữ ký của giám thị 1: .................................. Chữ ký của giám thị 2:................................. BÀI GIẢI CHI TIẾT.Câu I: x 2 (x - 3) x 3 - 3x 2 Hàm số: y = = 2 2 Tập xác định: D = ¡ 3x 2 - 6x Đạo hàm: y ¢ = 2 2 Cho y ¢= 0 Û 3x - 6x = 0 Û x = 0; x = 2 Giới hạn: lim y = - ¥ ; lim y = + ¥ x®- ¥ x® +¥ Bảng biến thiên x – 0 2 +¥ y¢ + 0 – 0 + 0 +¥ y – –2 Hàm số ĐB trên các khoảng (- ¥ ; 0),(2; + ¥ ) , NB trên khoảng (0;2) Hàm số đạt cực đại yCĐ = 0 tại x CÑ = 0 đạt cực tiểu yCT = –2 tại x CT = 2 . y y=k y ¢ = 3x - 3 = 0 Û x = 1 Þ y = - 1 . Điểm uốn: I (1; - 1) ¢ Giao điểm với trục hoành: y = 0 Û x 3 - 3x 2 = 0 Û x = 0 hoaë x = 3 c Giao điểm với trục tung: cho x = 0 Þ y = 0 -1 O 1 2 3 x Bảng giá ...
Nội dung trích xuất từ tài liệu:
Đề thi thử tốt nghiệp THPT môn Toán - THPT Lương Thế Vinh năm 2014 đề 17 TRƯỜNG THPT LƯƠNG THẾ VINH KỲ THI TỐT NGHIỆP THPT ĐỀ THI THỬ TỐT NGHIỆP Môn thi: TOÁN − Giáo dục trung học phổ thông Đề số 17 Thời gian làm bài: 150 phút, không kể thời gian giao đề ------------------------------ ---------------------------------------------------I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) x 2 (x - 3)Câu I (3,0 điểm): Cho hàm số: y = 2 1) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số. 2) Viết phương trình tiếp tuyến của (C ) tại giao điểm của (C ) với trục hoành. 3) Tìm điều kiện của k để phương trình sau đây có nghiệm duy nhất: x 3 - 3x 2 - k = 0 .Câu II (3,0 điểm): 2x 2 + 6x - 6 1) Giải phương trình: ( 2) = 2.4x + 1 3 x3 2) Tính tích phân: I = ò0 2 dx x +1 3) Tìm giá trị lớn nhất và nhỏ nhất của hàm số: y = x 5 - x 4 - 3x 3 + 9 trên đoạn [- 2;1]Câu III (1,0 điểm): Cho khối chóp S.ABC có ABC và SBC là các tam giác đều có cạnh bằng 2, SA = a 3 . Tính thể tích khối chóp S.ABC theo a.II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần dưới đây1. Theo chương trình chuẩnCâu IVa (2,0 điểm): Trong không gian với hệ toạ độ Oxyz, cho tam giác ABC có toạ độ các đỉnh: A(1;1;2), B(0;1;1) và C(1;0;4). 1) Chứng minh ABC là tam giác vuông. Xác định toạ độ điểm D để bốn điểm A,B,C,D là bốn đỉnh của một hình chữ nhật. uuur uuur 2) Gọi M là điểm thoả MB = 2 MC . Viết phương trình mặt phẳng (P) đi qua điểm M và vuông góc với đường thẳng BC. Viết phương trình mặt cầu tâm A, tiếp xúc với mp(P).Câu Va (1,0 điểm): Tính diện tích hình phẳng giới hạn bởi các đường sau đây: y = x (x - 1)2 , y = x 2 + x và x = - 12. Theo chương trình nâng caoCâu IVb (2,0 điểm): Trong không gian với hệ toạ độ Oxyz, cho điểm M (1; 2; –3) và đường thẳng x- 3 y+1 z- 1 d: = = 2 1 2 1) Tìm toạ độ hình chiếu vuông góc của điểm M lên đường thẳng d. Viết phương trình mặt cầu tâm M, tiếp xúc với d. 2) Viết phương trình mp(P) đi qua điểm M, song song với d và cách d một khoảng bằng 4.Câu Vb (1,0 điểm): Cho số phức z = 1 + 3i . Hãy viết dạng lượng giác của số phức z 5 . ---------- Hết ---------- Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm.Họ và tên thí sinh: ........................................ Số báo danh:...............................................Chữ ký của giám thị 1: .................................. Chữ ký của giám thị 2:................................. BÀI GIẢI CHI TIẾT.Câu I: x 2 (x - 3) x 3 - 3x 2 Hàm số: y = = 2 2 Tập xác định: D = ¡ 3x 2 - 6x Đạo hàm: y ¢ = 2 2 Cho y ¢= 0 Û 3x - 6x = 0 Û x = 0; x = 2 Giới hạn: lim y = - ¥ ; lim y = + ¥ x®- ¥ x® +¥ Bảng biến thiên x – 0 2 +¥ y¢ + 0 – 0 + 0 +¥ y – –2 Hàm số ĐB trên các khoảng (- ¥ ; 0),(2; + ¥ ) , NB trên khoảng (0;2) Hàm số đạt cực đại yCĐ = 0 tại x CÑ = 0 đạt cực tiểu yCT = –2 tại x CT = 2 . y y=k y ¢ = 3x - 3 = 0 Û x = 1 Þ y = - 1 . Điểm uốn: I (1; - 1) ¢ Giao điểm với trục hoành: y = 0 Û x 3 - 3x 2 = 0 Û x = 0 hoaë x = 3 c Giao điểm với trục tung: cho x = 0 Þ y = 0 -1 O 1 2 3 x Bảng giá ...
Tìm kiếm theo từ khóa liên quan:
Giải phương trình Phương trình tiếp tuyến Đề thi thử tốt nghiệp môn Toán Đề thi thử tốt nghiệp THPT 2014 Đề thi tốt nghiệp THPT Đề thi tốt nghiệpGợi ý tài liệu liên quan:
-
9 trang 461 0 0
-
Đề thi học sinh giỏi môn Toán lớp 12 năm 2023-2024 có đáp án - Trường THPT Mai Anh Tuấn, Thanh Hóa
9 trang 186 0 0 -
7 trang 176 0 0
-
4 trang 153 0 0
-
65 trang 103 0 0
-
Bộ đề thi vào lớp 10 môn Toán các tỉnh năm học 2023-2024
288 trang 102 0 0 -
Chuyên đề phát triển VD - VDC: Đề tham khảo thi TN THPT năm 2023 môn Toán
529 trang 99 0 0 -
Đề thi học sinh giỏi cấp tỉnh môn Toán THPT năm 2023-2024 có đáp án - Sở GD&ĐT Vĩnh Long
4 trang 73 6 0 -
Bộ đề thi vào lớp 10 môn Toán của các Sở Giáo dục và Đạo tạo
56 trang 59 0 0 -
Hướng dẫn sử dụng bộ đề thi tốt nghiệp nghề Kỹ thuật sửa chữa, lắp ráp máy tính
6 trang 52 0 0