Đề thi thử tuyển sinh ĐH môn Toán lần 1 năm 2014 - THPT Chuyên Nguyễn Quang Diêu
Số trang: 1
Loại file: pdf
Dung lượng: 93.99 KB
Lượt xem: 7
Lượt tải: 0
Xem trước 1 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Đề thi thử tuyển sinh ĐH môn Toán lần 1 năm 2014 của Trường THPT Chuyên Nguyễn Quang Diêu là tài liệu ôn tập hữu ích, giúp các em hệ thống lại kiến thức đã học để làm bài tốt trong kì thi sắp tới.
Nội dung trích xuất từ tài liệu:
Đề thi thử tuyển sinh ĐH môn Toán lần 1 năm 2014 - THPT Chuyên Nguyễn Quang Diêu S GD & T NG THÁP THI TH TUY N SINH I H C NĂM 2014 - L N 1THPT Chuyên Nguy n Quang Diêu Môn: TOÁN; Kh i A + A1 + B Th i gian làm bài: 180 phút, không k th i gian phát CHÍNH TH CI. PH N CHUNG CHO T T C THÍ SINH (7,0 i m) Câu 1 (2,0 i m). Cho hàm s y = − x3 + 3 x 2 + 3m ( m + 2 ) x + 1 (1), v i m là tham s th c. a) Kh o sát s bi n thiên và v th c a hàm s (1) khi m = 0 . b) Tìm m th hàm s (1) có hai i m c c tr i x ng nhau qua i m I (1;3 ) . Câu 2 (1,0 i m). Gi i phương trình cos x + tan x = 1 + tan x sin x . 4 x 2 + 4 xy + y 2 + 2 x + y − 2 = 0 Câu 3 (1,0 i m). Gi i h phương trình ( x, y ∈ ») . 8 1 − 2 x + y − 9 = 0 2 Câu 4 (1,0 i m). Tính tích phân I = 1 x 3 dx 0 + x +1 ∫x 2 4 . Câu 5 (1,0 i m). Cho hình lăng tr ABCD. A B C D có áy ABCD là hình vuông c nh a , c nh bên AA = a , hình chi u vuông góc c a A trên m t ph ng ( ABCD ) trùng v i trung i m I c a AB . G i K là trung i m c a BC . Tính theo a th tích kh i chóp A .IKD và kho ng cách t I n m t ph ng ( A KD ) . 3 Câu 6 (1,0 i m). Cho các s th c dương x, y, z th a mãn x + y + z ≤ . Tìm giá tr nh nh t c a bi u 2 x 2 y 2 z2 1 1 1 th c P = + + + + + . y z x x y zII. PH N RIÊNG (3,0 i m): Thí sinh ch ư c làm m t trong hai ph n (ph n A ho c B) A. Theo chương trình Chu n Câu 7.a (1.0 i m). Trong m t ph ng v i h tr c t a (Oxy) , cho hình ch nh t ABCD có ư ng chéo AC : x + 2 y − 9 = 0 . i m M (0; 4) n m trên c nh BC . Xác nh t a các nh c a hình ch nh t ã cho bi t r ng di n tích c a hình ch nh t ó b ng 6 , ư ng th ng CD i qua N (2;8) và nh C có tung là m t s nguyên. Câu 8.a (1.0 i m). Trong không gian v i h t a Oxyz , cho m t ph ng ( P ) : x + y + z + 3 = 0 và hai i m A(3;1;1), B(7;3;9) . Tìm trên m t ph ng ( P ) i m M sao cho MA + MB t giá tr nh nh t. Câu 9.a (1.0 i m). Trong m t chi c h p có 6 viên bi , 5 viên bi vàng và 4 viên bi tr ng. L y ng u nhiên trong h p ra 4 viên bi. Tính xác su t trong 4 bi l y ra không có c ba màu. B. Theo chương trình Nâng cao Câu 7.b (1.0 i m). Trong m t ph ng v i h tr c t a (Oxy) , cho hình ch nh t ABCD . Hai i m B, C thu c tr c tung. Phương trình ư ng chéo AC : 3 x + 4 y − 16 = 0 . Xác nh t a các nh c a hình ch nh t ã cho bi t r ng bán kính ư ng tròn n i ti p tam giác ACD b ng 1. x −1 y + 1 z −1 Câu 8.b (1.0 i m). Trong không gian v i h t a Oxyz, cho ư ng th ng (∆) : = = và 1 −2 3 hai i m A(2;1;1); B(1;1; 0) . Tìm i m M thu c (∆) sao cho tam giác AMB có di n tích nh nh t. 101+ lg( x + y ) = 50 Câu 9.b (1.0 i m). Gi i h phương trình . lg( x − y ) + lg( x + y ) = 2 − lg 5 -------------- H t ------------- Thí sinh không ư c s d ng tài li u. Cán b coi thi không gi i thích gì thêm. H và tên thí sinh:.......................................................................; S báo danh:..........................................
Nội dung trích xuất từ tài liệu:
Đề thi thử tuyển sinh ĐH môn Toán lần 1 năm 2014 - THPT Chuyên Nguyễn Quang Diêu S GD & T NG THÁP THI TH TUY N SINH I H C NĂM 2014 - L N 1THPT Chuyên Nguy n Quang Diêu Môn: TOÁN; Kh i A + A1 + B Th i gian làm bài: 180 phút, không k th i gian phát CHÍNH TH CI. PH N CHUNG CHO T T C THÍ SINH (7,0 i m) Câu 1 (2,0 i m). Cho hàm s y = − x3 + 3 x 2 + 3m ( m + 2 ) x + 1 (1), v i m là tham s th c. a) Kh o sát s bi n thiên và v th c a hàm s (1) khi m = 0 . b) Tìm m th hàm s (1) có hai i m c c tr i x ng nhau qua i m I (1;3 ) . Câu 2 (1,0 i m). Gi i phương trình cos x + tan x = 1 + tan x sin x . 4 x 2 + 4 xy + y 2 + 2 x + y − 2 = 0 Câu 3 (1,0 i m). Gi i h phương trình ( x, y ∈ ») . 8 1 − 2 x + y − 9 = 0 2 Câu 4 (1,0 i m). Tính tích phân I = 1 x 3 dx 0 + x +1 ∫x 2 4 . Câu 5 (1,0 i m). Cho hình lăng tr ABCD. A B C D có áy ABCD là hình vuông c nh a , c nh bên AA = a , hình chi u vuông góc c a A trên m t ph ng ( ABCD ) trùng v i trung i m I c a AB . G i K là trung i m c a BC . Tính theo a th tích kh i chóp A .IKD và kho ng cách t I n m t ph ng ( A KD ) . 3 Câu 6 (1,0 i m). Cho các s th c dương x, y, z th a mãn x + y + z ≤ . Tìm giá tr nh nh t c a bi u 2 x 2 y 2 z2 1 1 1 th c P = + + + + + . y z x x y zII. PH N RIÊNG (3,0 i m): Thí sinh ch ư c làm m t trong hai ph n (ph n A ho c B) A. Theo chương trình Chu n Câu 7.a (1.0 i m). Trong m t ph ng v i h tr c t a (Oxy) , cho hình ch nh t ABCD có ư ng chéo AC : x + 2 y − 9 = 0 . i m M (0; 4) n m trên c nh BC . Xác nh t a các nh c a hình ch nh t ã cho bi t r ng di n tích c a hình ch nh t ó b ng 6 , ư ng th ng CD i qua N (2;8) và nh C có tung là m t s nguyên. Câu 8.a (1.0 i m). Trong không gian v i h t a Oxyz , cho m t ph ng ( P ) : x + y + z + 3 = 0 và hai i m A(3;1;1), B(7;3;9) . Tìm trên m t ph ng ( P ) i m M sao cho MA + MB t giá tr nh nh t. Câu 9.a (1.0 i m). Trong m t chi c h p có 6 viên bi , 5 viên bi vàng và 4 viên bi tr ng. L y ng u nhiên trong h p ra 4 viên bi. Tính xác su t trong 4 bi l y ra không có c ba màu. B. Theo chương trình Nâng cao Câu 7.b (1.0 i m). Trong m t ph ng v i h tr c t a (Oxy) , cho hình ch nh t ABCD . Hai i m B, C thu c tr c tung. Phương trình ư ng chéo AC : 3 x + 4 y − 16 = 0 . Xác nh t a các nh c a hình ch nh t ã cho bi t r ng bán kính ư ng tròn n i ti p tam giác ACD b ng 1. x −1 y + 1 z −1 Câu 8.b (1.0 i m). Trong không gian v i h t a Oxyz, cho ư ng th ng (∆) : = = và 1 −2 3 hai i m A(2;1;1); B(1;1; 0) . Tìm i m M thu c (∆) sao cho tam giác AMB có di n tích nh nh t. 101+ lg( x + y ) = 50 Câu 9.b (1.0 i m). Gi i h phương trình . lg( x − y ) + lg( x + y ) = 2 − lg 5 -------------- H t ------------- Thí sinh không ư c s d ng tài li u. Cán b coi thi không gi i thích gì thêm. H và tên thí sinh:.......................................................................; S báo danh:..........................................
Tìm kiếm theo từ khóa liên quan:
Đồ thị hàm số Hệ phương trình Đề thi thử môn Toán Đề thi thử ĐH năm 2014 Đề thi thử ĐH Đề thi thửGợi ý tài liệu liên quan:
-
9 trang 462 0 0
-
Đề thi học sinh giỏi môn Toán lớp 12 năm 2023-2024 có đáp án - Trường THPT Mai Anh Tuấn, Thanh Hóa
9 trang 186 0 0 -
Chuyên đề phát triển VD - VDC: Đề tham khảo thi TN THPT năm 2023 môn Toán
529 trang 102 0 0 -
Bộ đề thi vào lớp 10 môn Toán các tỉnh năm học 2023-2024
288 trang 102 0 0 -
Đề thi học sinh giỏi cấp tỉnh môn Toán THPT năm 2023-2024 có đáp án - Sở GD&ĐT Vĩnh Long
4 trang 77 6 0 -
Đề thi giữa học kì 1 môn Toán lớp 9 năm 2023-2024 có đáp án - Trường THCS Quang Trung, Tiên Phước
10 trang 62 0 0 -
Đề cương ôn tập giữa học kì 1 môn Toán lớp 11 năm 2022-2023 - Trường THPT Uông Bí
14 trang 59 0 0 -
39 trang 58 0 0
-
Tài liệu ôn tập học kì 1 môn Toán lớp 10 năm 2023-2024 - Trường THPT Trần Phú, Đà Nẵng
21 trang 51 0 0 -
Đề thi học kì 1 môn Toán lớp 9 năm 2023-2024 có đáp án - Trường THCS Minh Đức (Đề tham khảo 02)
6 trang 46 0 0