Danh mục

Đề thi thử tuyển sinh ĐH môn Toán lần 1 năm 2014 - THPT Chuyên Nguyễn Quang Diêu

Số trang: 1      Loại file: pdf      Dung lượng: 93.99 KB      Lượt xem: 7      Lượt tải: 0    
tailieu_vip

Phí lưu trữ: miễn phí Tải xuống file đầy đủ (1 trang) 0
Xem trước 1 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Đề thi thử tuyển sinh ĐH môn Toán lần 1 năm 2014 của Trường THPT Chuyên Nguyễn Quang Diêu là tài liệu ôn tập hữu ích, giúp các em hệ thống lại kiến thức đã học để làm bài tốt trong kì thi sắp tới.
Nội dung trích xuất từ tài liệu:
Đề thi thử tuyển sinh ĐH môn Toán lần 1 năm 2014 - THPT Chuyên Nguyễn Quang Diêu S GD & T NG THÁP THI TH TUY N SINH I H C NĂM 2014 - L N 1THPT Chuyên Nguy n Quang Diêu Môn: TOÁN; Kh i A + A1 + B Th i gian làm bài: 180 phút, không k th i gian phát CHÍNH TH CI. PH N CHUNG CHO T T C THÍ SINH (7,0 i m) Câu 1 (2,0 i m). Cho hàm s y = − x3 + 3 x 2 + 3m ( m + 2 ) x + 1 (1), v i m là tham s th c. a) Kh o sát s bi n thiên và v th c a hàm s (1) khi m = 0 . b) Tìm m th hàm s (1) có hai i m c c tr i x ng nhau qua i m I (1;3 ) . Câu 2 (1,0 i m). Gi i phương trình cos x + tan x = 1 + tan x sin x . 4 x 2 + 4 xy + y 2 + 2 x + y − 2 = 0  Câu 3 (1,0 i m). Gi i h phương trình  ( x, y ∈ ») . 8 1 − 2 x + y − 9 = 0 2  Câu 4 (1,0 i m). Tính tích phân I = 1 x 3 dx 0 + x +1 ∫x 2 4 . Câu 5 (1,0 i m). Cho hình lăng tr ABCD. A B C D có áy ABCD là hình vuông c nh a , c nh bên AA = a , hình chi u vuông góc c a A trên m t ph ng ( ABCD ) trùng v i trung i m I c a AB . G i K là trung i m c a BC . Tính theo a th tích kh i chóp A .IKD và kho ng cách t I n m t ph ng ( A KD ) . 3 Câu 6 (1,0 i m). Cho các s th c dương x, y, z th a mãn x + y + z ≤ . Tìm giá tr nh nh t c a bi u 2 x 2 y 2 z2 1 1 1 th c P = + + + + + . y z x x y zII. PH N RIÊNG (3,0 i m): Thí sinh ch ư c làm m t trong hai ph n (ph n A ho c B) A. Theo chương trình Chu n Câu 7.a (1.0 i m). Trong m t ph ng v i h tr c t a (Oxy) , cho hình ch nh t ABCD có ư ng chéo AC : x + 2 y − 9 = 0 . i m M (0; 4) n m trên c nh BC . Xác nh t a các nh c a hình ch nh t ã cho bi t r ng di n tích c a hình ch nh t ó b ng 6 , ư ng th ng CD i qua N (2;8) và nh C có tung là m t s nguyên. Câu 8.a (1.0 i m). Trong không gian v i h t a Oxyz , cho m t ph ng ( P ) : x + y + z + 3 = 0 và hai i m A(3;1;1), B(7;3;9) . Tìm trên m t ph ng ( P ) i m M sao cho MA + MB t giá tr nh nh t. Câu 9.a (1.0 i m). Trong m t chi c h p có 6 viên bi , 5 viên bi vàng và 4 viên bi tr ng. L y ng u nhiên trong h p ra 4 viên bi. Tính xác su t trong 4 bi l y ra không có c ba màu. B. Theo chương trình Nâng cao Câu 7.b (1.0 i m). Trong m t ph ng v i h tr c t a (Oxy) , cho hình ch nh t ABCD . Hai i m B, C thu c tr c tung. Phương trình ư ng chéo AC : 3 x + 4 y − 16 = 0 . Xác nh t a các nh c a hình ch nh t ã cho bi t r ng bán kính ư ng tròn n i ti p tam giác ACD b ng 1. x −1 y + 1 z −1 Câu 8.b (1.0 i m). Trong không gian v i h t a Oxyz, cho ư ng th ng (∆) : = = và 1 −2 3 hai i m A(2;1;1); B(1;1; 0) . Tìm i m M thu c (∆) sao cho tam giác AMB có di n tích nh nh t. 101+ lg( x + y ) = 50  Câu 9.b (1.0 i m). Gi i h phương trình  . lg( x − y ) + lg( x + y ) = 2 − lg 5  -------------- H t ------------- Thí sinh không ư c s d ng tài li u. Cán b coi thi không gi i thích gì thêm. H và tên thí sinh:.......................................................................; S báo danh:..........................................

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: