Đề thi tốt nghiệp THPT môn Toán năm 2009 - Bộ GDĐT
Số trang: 22
Loại file: pdf
Dung lượng: 1.10 MB
Lượt xem: 11
Lượt tải: 0
Xem trước 3 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Các bạn học sinh và quý thầy cô tham khảo miễn phí Đề thi tốt nghiệp THPT môn Toán năm 2009 - Bộ GDĐT để hệ thống kiến thức học tập cũng như trau dồi kinh nghiệm ra đề thi
Nội dung trích xuất từ tài liệu:
Đề thi tốt nghiệp THPT môn Toán năm 2009 - Bộ GDĐT BỘ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2009 Môn thi: TOÁN − Giáo dục trung học phổ thông ĐỀ THI CHÍNH THỨC Thời gian làm bài: 150 phút, không kể thời gian giao đềI. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) 2x + 1Câu 1 (3,0 điểm). Cho hàm số y = . x−2 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. 2) Viết phương trình tiếp tuyến của đồ thị (C), biết hệ số góc của tiếp tuyến bằng – 5.Câu 2 (3,0 điểm) 1) Giải phương trình 25 x − 6.5 x + 5 = 0 . π 2) Tính tích phân I = ∫ x (1 + cos x ) dx. 0 3) Tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số f ( x) = x 2 − ln(1 − 2 x) trên đoạn [– 2 ; 0].Câu 3 (1,0 điểm). Cho hình chóp S.ABC có mặt bên SBC là tam giác đều cạnh a, cạnh bên SAvuông góc với mặt phẳng đáy. Biết BAC = 1200 , tính thể tích của khối chóp S.ABC theo a.II. PHẦN RIÊNG (3,0 điểm)Thí sinh học chương trình nào thì chỉ được chọn phần dành riêng cho chương trình đó(phần 1 hoặc phần 2).1. Theo chương trình Chuẩn:Câu 4a (2,0 điểm). Trong không gian Oxyz, cho mặt cầu (S) và mặt phẳng (P) có phương trình: (S): ( x − 1) 2 + ( y − 2) 2 + ( z − 2) 2 = 36 và (P): x + 2 y + 2 z + 18 = 0 . 1) Xác định toạ độ tâm T và tính bán kính của mặt cầu (S). Tính khoảng cách từ T đến mặtphẳng (P). 2) Viết phương trình tham số của đường thẳng d đi qua T và vuông góc với (P). Tìm toạ độ giaođiểm của d và (P).Câu 5a (1,0 điểm). Giải phương trình 8 z 2 − 4 z + 1 = 0 trên tập số phức.2. Theo chương trình Nâng cao:Câu 4b (2,0 điểm). Trong không gian Oxyz, cho điểm A(1; – 2; 3) và đường thẳng d có phương trình x +1 y − 2 z + 3 = = . 2 1 −1 1) Viết phương trình tổng quát của mặt phẳng đi qua điểm A và vuông góc với đường thẳng d. 2) Tính khoảng cách từ điểm A đến đường thẳng d. Viết phương trình mặt cầu tâm A, tiếpxúc với d.Câu 5b (1,0 điểm). Giải phương trình 2 z 2 − iz + 1 = 0 trên tập số phức. ......... Hết ......... Thí sinh không được sử dụng tài liệu. Giám thị không giải thích gì thêm.Họ và tên thí sinh: ................................................. Số báo danh:...........................Chữ kí của giám thị 1: ................................ Chữ kí của giám thị 2: ................................Bé gi¸o dôc vμ ®μo t¹o kú thi tèt nghiÖp trung häc phæ th«ng n¨m 2008 M«n thi: to¸n - Trung häc phæ th«ng ph©n ban §Ò thi chÝnh thøc Thêi gian lµm bµi: 150 phót, kh«ng kÓ thêi gian giao ®Ò I. PhÇn chung cho thÝ sinh c¶ 2 ban (8 ®iÓm) C©u 1 (3,5 ®iÓm) Cho hµm sè y = 2 x 3 + 3x 2 − 1 . 1) Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ cña hµm sè. 2) BiÖn luËn theo m sè nghiÖm thùc cña ph−¬ng tr×nh 2x 3 + 3x 2 − 1 = m. C©u 2 (1,5 ®iÓm) Gi¶i ph−¬ng tr×nh 32x +1 − 9.3x + 6 = 0 . C©u 3 (1,0 ®iÓm) TÝnh gi¸ trÞ cña biÓu thøc P = (1 + 3 i) 2 + (1 − 3 i) 2 . C©u 4 (2,0 ®iÓm) Cho h×nh chãp tam gi¸c ®Òu S.ABC cã c¹nh ®¸y b»ng a, c¹nh bªn b»ng 2a. Gäi I lµ trung ®iÓm cña c¹nh BC. 1) Chøng minh SA vu«ng gãc víi BC. 2) TÝnh thÓ tÝch khèi chãp S.ABI theo a. II. PHÇN dμnh cho thÝ sinh tõng ban (2 ®iÓm) A. ThÝ sinh Ban KHTN chän c©u 5a hoÆc c©u 5b C©u 5a (2,0 ®iÓm) 1 1) TÝnh tÝch ph©n I = ∫ x 2 (1 − x 3 ) 4 dx . −1 ⎡ π⎤ 2) T×m gi¸ trÞ lín nhÊt vµ gi¸ trÞ nhá nhÊt cña hµm sè f (x) = x + 2 cos x trªn ®o¹n ⎢0; ⎥ . ⎣ 2⎦ C©u 5b (2,0 ®iÓm) Trong kh«ng gian víi hÖ to¹ ®é Oxyz, cho ®iÓm A(3; − 2; − 2) vµ mÆt ph¼ng (P) cã ph−¬ng tr×nh 2x − 2 y + z − 1 = 0 . 1) ViÕt ph−¬ng tr×nh cña ®−êng th¼ng ®i qua ®iÓm A vµ vu«ng gãc víi mÆt ph¼ng (P). 2) TÝnh kho¶ng c¸ch tõ ®iÓm A ®Õn mÆt ph¼ng (P). ViÕt ph−¬ng tr×nh cña mÆt ph¼ng (Q) sao cho (Q) song song víi (P) vµ kho¶ng c¸ch gi÷a (P) vµ (Q) b»ng kho¶ng c¸ch tõ ®iÓm A ®Õn (P). B. ThÝ sinh Ban KHXH-NV chän c©u 6a hoÆc c©u 6b C©u 6a (2,0 ®iÓm) π 2 1) TÝnh tÝch ...
Nội dung trích xuất từ tài liệu:
Đề thi tốt nghiệp THPT môn Toán năm 2009 - Bộ GDĐT BỘ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2009 Môn thi: TOÁN − Giáo dục trung học phổ thông ĐỀ THI CHÍNH THỨC Thời gian làm bài: 150 phút, không kể thời gian giao đềI. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) 2x + 1Câu 1 (3,0 điểm). Cho hàm số y = . x−2 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. 2) Viết phương trình tiếp tuyến của đồ thị (C), biết hệ số góc của tiếp tuyến bằng – 5.Câu 2 (3,0 điểm) 1) Giải phương trình 25 x − 6.5 x + 5 = 0 . π 2) Tính tích phân I = ∫ x (1 + cos x ) dx. 0 3) Tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số f ( x) = x 2 − ln(1 − 2 x) trên đoạn [– 2 ; 0].Câu 3 (1,0 điểm). Cho hình chóp S.ABC có mặt bên SBC là tam giác đều cạnh a, cạnh bên SAvuông góc với mặt phẳng đáy. Biết BAC = 1200 , tính thể tích của khối chóp S.ABC theo a.II. PHẦN RIÊNG (3,0 điểm)Thí sinh học chương trình nào thì chỉ được chọn phần dành riêng cho chương trình đó(phần 1 hoặc phần 2).1. Theo chương trình Chuẩn:Câu 4a (2,0 điểm). Trong không gian Oxyz, cho mặt cầu (S) và mặt phẳng (P) có phương trình: (S): ( x − 1) 2 + ( y − 2) 2 + ( z − 2) 2 = 36 và (P): x + 2 y + 2 z + 18 = 0 . 1) Xác định toạ độ tâm T và tính bán kính của mặt cầu (S). Tính khoảng cách từ T đến mặtphẳng (P). 2) Viết phương trình tham số của đường thẳng d đi qua T và vuông góc với (P). Tìm toạ độ giaođiểm của d và (P).Câu 5a (1,0 điểm). Giải phương trình 8 z 2 − 4 z + 1 = 0 trên tập số phức.2. Theo chương trình Nâng cao:Câu 4b (2,0 điểm). Trong không gian Oxyz, cho điểm A(1; – 2; 3) và đường thẳng d có phương trình x +1 y − 2 z + 3 = = . 2 1 −1 1) Viết phương trình tổng quát của mặt phẳng đi qua điểm A và vuông góc với đường thẳng d. 2) Tính khoảng cách từ điểm A đến đường thẳng d. Viết phương trình mặt cầu tâm A, tiếpxúc với d.Câu 5b (1,0 điểm). Giải phương trình 2 z 2 − iz + 1 = 0 trên tập số phức. ......... Hết ......... Thí sinh không được sử dụng tài liệu. Giám thị không giải thích gì thêm.Họ và tên thí sinh: ................................................. Số báo danh:...........................Chữ kí của giám thị 1: ................................ Chữ kí của giám thị 2: ................................Bé gi¸o dôc vμ ®μo t¹o kú thi tèt nghiÖp trung häc phæ th«ng n¨m 2008 M«n thi: to¸n - Trung häc phæ th«ng ph©n ban §Ò thi chÝnh thøc Thêi gian lµm bµi: 150 phót, kh«ng kÓ thêi gian giao ®Ò I. PhÇn chung cho thÝ sinh c¶ 2 ban (8 ®iÓm) C©u 1 (3,5 ®iÓm) Cho hµm sè y = 2 x 3 + 3x 2 − 1 . 1) Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ cña hµm sè. 2) BiÖn luËn theo m sè nghiÖm thùc cña ph−¬ng tr×nh 2x 3 + 3x 2 − 1 = m. C©u 2 (1,5 ®iÓm) Gi¶i ph−¬ng tr×nh 32x +1 − 9.3x + 6 = 0 . C©u 3 (1,0 ®iÓm) TÝnh gi¸ trÞ cña biÓu thøc P = (1 + 3 i) 2 + (1 − 3 i) 2 . C©u 4 (2,0 ®iÓm) Cho h×nh chãp tam gi¸c ®Òu S.ABC cã c¹nh ®¸y b»ng a, c¹nh bªn b»ng 2a. Gäi I lµ trung ®iÓm cña c¹nh BC. 1) Chøng minh SA vu«ng gãc víi BC. 2) TÝnh thÓ tÝch khèi chãp S.ABI theo a. II. PHÇN dμnh cho thÝ sinh tõng ban (2 ®iÓm) A. ThÝ sinh Ban KHTN chän c©u 5a hoÆc c©u 5b C©u 5a (2,0 ®iÓm) 1 1) TÝnh tÝch ph©n I = ∫ x 2 (1 − x 3 ) 4 dx . −1 ⎡ π⎤ 2) T×m gi¸ trÞ lín nhÊt vµ gi¸ trÞ nhá nhÊt cña hµm sè f (x) = x + 2 cos x trªn ®o¹n ⎢0; ⎥ . ⎣ 2⎦ C©u 5b (2,0 ®iÓm) Trong kh«ng gian víi hÖ to¹ ®é Oxyz, cho ®iÓm A(3; − 2; − 2) vµ mÆt ph¼ng (P) cã ph−¬ng tr×nh 2x − 2 y + z − 1 = 0 . 1) ViÕt ph−¬ng tr×nh cña ®−êng th¼ng ®i qua ®iÓm A vµ vu«ng gãc víi mÆt ph¼ng (P). 2) TÝnh kho¶ng c¸ch tõ ®iÓm A ®Õn mÆt ph¼ng (P). ViÕt ph−¬ng tr×nh cña mÆt ph¼ng (Q) sao cho (Q) song song víi (P) vµ kho¶ng c¸ch gi÷a (P) vµ (Q) b»ng kho¶ng c¸ch tõ ®iÓm A ®Õn (P). B. ThÝ sinh Ban KHXH-NV chän c©u 6a hoÆc c©u 6b C©u 6a (2,0 ®iÓm) π 2 1) TÝnh tÝch ...
Tìm kiếm theo từ khóa liên quan:
Bài tập ôn thi tốt nghiệp toán 12 Đề cương ôn thi toán THPT Phương trình tiếp tuyến Tọa độ trong không gian Giải phương trình Giá trị lớn nhất nhỏ nhấtGợi ý tài liệu liên quan:
-
9 trang 463 0 0
-
Đề thi học sinh giỏi môn Toán lớp 12 năm 2023-2024 có đáp án - Trường THPT Mai Anh Tuấn, Thanh Hóa
9 trang 188 0 0 -
7 trang 177 0 0
-
65 trang 104 0 0
-
Bộ đề thi vào lớp 10 môn Toán các tỉnh năm học 2023-2024
288 trang 103 0 0 -
Chuyên đề phát triển VD - VDC: Đề tham khảo thi TN THPT năm 2023 môn Toán
529 trang 102 0 0 -
Đề thi học sinh giỏi cấp tỉnh môn Toán THPT năm 2023-2024 có đáp án - Sở GD&ĐT Vĩnh Long
4 trang 78 6 0 -
Bộ đề thi vào lớp 10 môn Toán của các Sở Giáo dục và Đạo tạo
56 trang 60 0 0 -
Đề cương ôn tập học kì 2 môn Toán lớp 8 năm 2021-2022 - Trường THCS Lê Quang Cường
9 trang 53 0 0 -
Tài liệu ôn tập học kì 1 môn Toán lớp 10 năm 2023-2024 - Trường THPT Trần Phú, Đà Nẵng
21 trang 52 0 0