Đề thi tuyển sinh 10 Toán - Sở GD&ĐT Tp.HCM (2011-2012)
Số trang: 4
Loại file: pdf
Dung lượng: 362.08 KB
Lượt xem: 13
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Đề thi tuyển sinh 10 Toán - Sở GD&ĐT Tp.HCM (2011-2012) nhằm giúp cho học sinh ôn tập, luyện tập và vận dụng các kiến thức vào việc giải các bài tập và đặc biệt khi giải những bài tập cần phải tính toán một cách nhanh nhất, thuận lợi nhất đồng thời đáp ứng cho kỳ thi tuyển vào lớp 10.
Nội dung trích xuất từ tài liệu:
Đề thi tuyển sinh 10 Toán - Sở GD&ĐT Tp.HCM (2011-2012)Xin trân thành cảm ơn www.tradiemthi.net đã hỗ trợ để chúng tôi có những đáp án, đề thi nàyS GIÁO D C VÀ ÀO T O KỲ THI TUY N SINH L P 10 THPT TP.HCM Năm h c: 2011 – 2012 CHÍNH TH C MÔN: TOÁN Th i gian làm bài: 120 phútBài 1: (2 i m) Gi i các phương trình và h phương trình sau: a) 3 x 2 − 2 x − 1 = 0 5x + 7 y = 3 b) 5 x − 4 y = −8 c) x 4 + 5 x 2 − 36 = 0 d) 3 x 2 + 5 x + 3 − 3 = 0Bài 2: (1,5 i m) .v n z a) V th (P) c a hàm s y = − x 2 và ư ng th ng (D): y = −2 x − 3 trên cùng zz m t h tr c to . . b) Tìm to các giao i m c a (P) và (D) câu trên b ng phép tính.Bài 3: (1,5 i m) Thu g n các bi u th c sau: th i e 3 3−4 3+4 A= + d 2 3 +1 5−2 3 n x x − 2 x + 28 x −4 x +8 B= − + ( x ≥ 0, x ≠ 16) a x −3 x −4 x +1 4 − x pBài 4: (1,5 i m) a Cho phương trình x 2 − 2mx − 4m 2 − 5 = 0 (x là n s ) D a) Ch ng minh r ng phương trình luôn luôn có nghi m v i m i m. b) G i x1, x2 là các nghi m c a phương trình. Tìm m bi u th c A = x12 + x2 − x1 x2 . t giá tr nh nh t 2Bài 5: (3,5 i m) Cho ư ng tròn (O) có tâm O, ư ng kính BC. L y m t i m A trên ư ng tròn(O) sao cho AB > AC. T A, v AH vuông góc v i BC (H thu c BC). T H, v HEvuông góc v i AB và HF vuông góc v i AC (E thu c AB, F thu c AC). a) Ch ng minh r ng AEHF là hình ch nh t và OA vuông góc v i EF. b) ư ng th ng EF c t ư ng tròn (O) t i P và Q (E n m gi a P và F). Ch ng minh AP2 = AE.AB. Suy ra APH là tam giác cân c) G i D là giao i m c a PQ và BC; K là giao i m cùa AD và ư ng tròn (O) (K khác A). Ch ng minh AEFK là m t t giác n i ti p. d) G i I là giao i m c a KF và BC. Ch ng minh IH2 = IC.ID Đăng ký nhận Điểm thi, Điểm chuẩn, Nguyện vọng Bấm đây>>Xin trân thành cảm ơn www.tradiemthi.net đã hỗ trợ để chúng tôi có những đáp án, đề thi này BÀI GI IBài 1: (2 i m) Gi i các phương trình và h phương trình sau: a) 3 x 2 − 2 x − 1 = 0 (a) Vì phương trình (a) có a + b + c = 0 nên −1 (a) ⇔ x = 1 hay x = 3 5 x + 7 y = 3 (1) 11y = 11 ((1) − (2)) b) ⇔ 5 x − 4 y = −8 (2) 5 x − 4 y = −8 n 4 y =1 x = − .v ⇔ ⇔ 5 5 x = −4 y =1 z 4 2 c) x + 5x – 36 = 0 (C) zz t u = x2 ≥ 0, phương trình thành : u2 + 5u – 36 = 0 (*) i . −5 + 13 −5 − 13 (*) có ∆ = 169, nên (*) ⇔ u = = 4 hay u = = −9 (lo i) th 2 2 Do ó, (C) ⇔ x2 = 4 ⇔ x = ±2 Cách khác : (C) ⇔ (x2 – 4)(x2 + 9) = 0 ⇔ x2 = 4 ⇔ x = ±2 d e d) 3 x 2 − x 3 + 3 − 3 = 0 (d) (d) có : a + b + c = 0 nên (d) ⇔ x = 1 hay x = 3 −3 n 3Bài 2: a) ...
Nội dung trích xuất từ tài liệu:
Đề thi tuyển sinh 10 Toán - Sở GD&ĐT Tp.HCM (2011-2012)Xin trân thành cảm ơn www.tradiemthi.net đã hỗ trợ để chúng tôi có những đáp án, đề thi nàyS GIÁO D C VÀ ÀO T O KỲ THI TUY N SINH L P 10 THPT TP.HCM Năm h c: 2011 – 2012 CHÍNH TH C MÔN: TOÁN Th i gian làm bài: 120 phútBài 1: (2 i m) Gi i các phương trình và h phương trình sau: a) 3 x 2 − 2 x − 1 = 0 5x + 7 y = 3 b) 5 x − 4 y = −8 c) x 4 + 5 x 2 − 36 = 0 d) 3 x 2 + 5 x + 3 − 3 = 0Bài 2: (1,5 i m) .v n z a) V th (P) c a hàm s y = − x 2 và ư ng th ng (D): y = −2 x − 3 trên cùng zz m t h tr c to . . b) Tìm to các giao i m c a (P) và (D) câu trên b ng phép tính.Bài 3: (1,5 i m) Thu g n các bi u th c sau: th i e 3 3−4 3+4 A= + d 2 3 +1 5−2 3 n x x − 2 x + 28 x −4 x +8 B= − + ( x ≥ 0, x ≠ 16) a x −3 x −4 x +1 4 − x pBài 4: (1,5 i m) a Cho phương trình x 2 − 2mx − 4m 2 − 5 = 0 (x là n s ) D a) Ch ng minh r ng phương trình luôn luôn có nghi m v i m i m. b) G i x1, x2 là các nghi m c a phương trình. Tìm m bi u th c A = x12 + x2 − x1 x2 . t giá tr nh nh t 2Bài 5: (3,5 i m) Cho ư ng tròn (O) có tâm O, ư ng kính BC. L y m t i m A trên ư ng tròn(O) sao cho AB > AC. T A, v AH vuông góc v i BC (H thu c BC). T H, v HEvuông góc v i AB và HF vuông góc v i AC (E thu c AB, F thu c AC). a) Ch ng minh r ng AEHF là hình ch nh t và OA vuông góc v i EF. b) ư ng th ng EF c t ư ng tròn (O) t i P và Q (E n m gi a P và F). Ch ng minh AP2 = AE.AB. Suy ra APH là tam giác cân c) G i D là giao i m c a PQ và BC; K là giao i m cùa AD và ư ng tròn (O) (K khác A). Ch ng minh AEFK là m t t giác n i ti p. d) G i I là giao i m c a KF và BC. Ch ng minh IH2 = IC.ID Đăng ký nhận Điểm thi, Điểm chuẩn, Nguyện vọng Bấm đây>>Xin trân thành cảm ơn www.tradiemthi.net đã hỗ trợ để chúng tôi có những đáp án, đề thi này BÀI GI IBài 1: (2 i m) Gi i các phương trình và h phương trình sau: a) 3 x 2 − 2 x − 1 = 0 (a) Vì phương trình (a) có a + b + c = 0 nên −1 (a) ⇔ x = 1 hay x = 3 5 x + 7 y = 3 (1) 11y = 11 ((1) − (2)) b) ⇔ 5 x − 4 y = −8 (2) 5 x − 4 y = −8 n 4 y =1 x = − .v ⇔ ⇔ 5 5 x = −4 y =1 z 4 2 c) x + 5x – 36 = 0 (C) zz t u = x2 ≥ 0, phương trình thành : u2 + 5u – 36 = 0 (*) i . −5 + 13 −5 − 13 (*) có ∆ = 169, nên (*) ⇔ u = = 4 hay u = = −9 (lo i) th 2 2 Do ó, (C) ⇔ x2 = 4 ⇔ x = ±2 Cách khác : (C) ⇔ (x2 – 4)(x2 + 9) = 0 ⇔ x2 = 4 ⇔ x = ±2 d e d) 3 x 2 − x 3 + 3 − 3 = 0 (d) (d) có : a + b + c = 0 nên (d) ⇔ x = 1 hay x = 3 −3 n 3Bài 2: a) ...
Tìm kiếm theo từ khóa liên quan:
Rút gọn biểu thức Giải phương trình Đề thi tuyển vào lớp 10 Toán Đề thi tuyển lớp 10 năm 2011 Đề thi tuyển vào lớp 10 Đề thi tuyểnGợi ý tài liệu liên quan:
-
9 trang 461 0 0
-
Đề thi học sinh giỏi môn Toán lớp 12 năm 2023-2024 có đáp án - Trường THPT Mai Anh Tuấn, Thanh Hóa
9 trang 186 0 0 -
7 trang 176 0 0
-
Bộ đề thi học sinh giỏi cấp tỉnh môn Toán lớp 9
263 trang 159 0 0 -
65 trang 103 0 0
-
Bộ đề thi vào lớp 10 môn Toán các tỉnh năm học 2023-2024
288 trang 102 0 0 -
Chuyên đề phát triển VD - VDC: Đề tham khảo thi TN THPT năm 2023 môn Toán
529 trang 99 0 0 -
Đề cương ôn tập học kì 2 môn Toán lớp 9 năm 2022-2023 - Trường THCS Dương Nội
5 trang 76 0 0 -
Đề thi giữa học kì 1 môn Toán lớp 8 năm 2023-2024 có đáp án - Trường THCS Lê Đình Chinh, Tiên Phước
5 trang 74 2 0 -
Đề thi học sinh giỏi cấp tỉnh môn Toán THPT năm 2023-2024 có đáp án - Sở GD&ĐT Vĩnh Long
4 trang 73 6 0