Danh mục

Đề thi tuyển sinh THPT chuyên môn Toán năm học 2009-2010 - Sở GD&ĐT

Số trang: 5      Loại file: pdf      Dung lượng: 228.69 KB      Lượt xem: 8      Lượt tải: 0    
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Đề thi tuyển sinh THPT chuyên môn Toán năm học 2009-2010 của Sở GD&ĐT dành cho các bạn học sinh nhằm giúp các bạn củng cố kiến thức môn Toán về: Giải phương trình, giải hệ phương trình, quỹ tích giao điểm. Chúc các bạn thành công.
Nội dung trích xuất từ tài liệu:
Đề thi tuyển sinh THPT chuyên môn Toán năm học 2009-2010 - Sở GD&ĐTSỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH TRUNG HỌC PHỔ THÔNG TỈNH PHÚ YÊN NĂM HỌC 2009-2010 Môn thi: TOÁN CHUYÊN ĐỀ CHÍNH THỨC Thời gian: 150 phút (không kể thời gian phát đề) *****Câu 1.(4,0 điểm) Cho phương trình x4 + ax3 + x2 + ax + 1 = 0, a là tham số . a) Giải phương trình với a = 1. b) Trong trường hợp phương trình có nghiệm, chứng minh rằng a2 > 2.Câu 2.(4,0 điểm) a) Giải phương trình: x + 3 + 6 - x  (x + 3)(6 - x) = 3 . x + y + z =1 b) Giải hệ phương trình:  2 . 2x + 2y - 2xy + z = 1Câu 3.(3,0 điểm) Tìm tất cả các số nguyên x, y, z thỏa mãn : 3x2 + 6y2 +2z2 + 3y2z2 -18x = 6.Câu 4.(3,0 điểm) a) Cho x, y, z, a, b, c là các số dương. Chứng minh rằng: 3 abc + 3 xyz  3 (a + x)(b + y)(c + z) . 3 b) Từ đó suy ra : 3 3 3  3 3 3 3  23 3Câu 5.(3,0 điểm) Cho hình vuông ABCD và tứ giác MNPQ có bốn đỉnh thuộc bốncạnh AB, BC, CD, DA của hình vuông. AC a) Chứng minh rằng SABCD  (MN + NP + PQ + QM). 4 b) Xác định vị trí của M, N, P, Q để chu vi tứ giác MNPQ nhỏ nhất.Câu 6.(3,0 điểm) Cho đường tròn (O) nội tiếp hình vuông PQRS. OA và OB là haibán kính thay đổi vuông góc với nhau. Qua A kẻ đường thẳng Ax song song vớiđường thẳng PQ, qua B kẻ đường thẳng By song song với đường thẳng SP. Tìmquỹ tích giao điểm M của Ax và By. =HẾT=Họ và tên thí sinh:……………………………………….Số báo danh:……………Chữ kí giám thị 1:………………………Chữ kí giám thị 2:….……………………SỞ GD & ĐT PHÚ YÊN *** KỲ THI TUYỂN SINH THPT NĂM HỌC 2009 -2010 MÔN : TOÁN (Hệ số 2) -------ĐỀ CHÍNH THỨC HƯỚNG DẪN CHẤM THI Bản hướng dẫn chấm gồm 04 trang I- Hướng dẫn chung: 1- Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì cho đủđiểm từng phần như hướng dẫn quy định. 2- Việc chi tiết hoá thang điểm (nếu có) so với thang điểm hướng dẫn chấm phảibảo đảm không sai lệch với hướng dẫn chấm và được thống nhất thực hiện trong Hộiđồng chấm thi. 3- Điểm toàn bài thi không làm tròn số. II- Đáp án và thang điểm: CÂU ĐÁP ÁN Điểm 4 3 2Câu 1a. Ta có phương trình : x + ax +x + ax + 1 = 0 (1)(2,0đ) Khi a =1 , (1)  x 4 +x 3 +x 2 +x+1= 0 (2) Dễ thấy x = 0 không phải là nghiệm. 1 1 0,50 Chia 2 vế của (2) cho x2 ta được: x 2 + 2 + x + +1= 0 (3). x x 1 1 1 1 Đặt t = x+  t  x+  x +  2 và x 2 + 2  t 2 -2 . 0,50 x x x x Phương trình (3) viết lại là : t 2 + t - 1 = 0 0,50 1  5 1  5 Giải (3) ta được hai nghiệm t1  và t 2  đều không thỏa 2 2 điều kiện |t| 2.Vậy với a = 1, phương trình đã cho vô nghiệm. 0,50Câu1b. Vì x = 0 không phải là nghiệm của (1) nên ta cũng chia 2 vế cho x2 ta(2,0đ) 1  1 có phương trình : x 2 + 2 +a  x +  +1= 0 . x  x 1 0,50 Đặt t = x + , phương trình sẽ là : t2 + at - 1 = 0 (4). x Do phương trình đã cho có nghiệm nên (4) có nghiệm |t|  2. Từ (4) Hướng dẫn chấm môn Toán – Trang 1 1- t 2 suy ra a  . 0,50 t (1 - t 2 ) 2 0,50 Từ đó : a 2 >2   2  t 2 (t 2 - 4)  1  0 (5) ...

Tài liệu được xem nhiều:

Tài liệu liên quan: