Thông tin tài liệu:
Tham khảo tài liệu đề và đáp án thi thử đại học môn toán 2010_đề số 10, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Đề và đáp án thi thử đại học môn Toán 2010_Đề số 10 Trung tâm Hocmai.vn Hà Nội, ngày 19 tháng 06 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy - Tel: (094)-2222-408 ĐỀ TỰ ÔN SỐ 10 Câu I. (2 điểm). Cho hàm số y = − x3 − 3x2 + mx + 4, trong đó m là tham số thực. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho, với m = 0. 2. Tìm tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trên khoảng (0 ; + ∞). Câu II. (2 điểm) 1) Giải phương trình lượng giác sau: 3 (2cos2x + cosx – 2) + (3 – 2cosx)sinx = 0 x+ y≤ 3 2) Tìm m để hệ phương trình sau có nghiệm: x + y+ 2 x(y− 1)+ m = 3 Câu III. (1 điểm) Tính giới hạn sau: 3 3x 2 − 1 + 2 x 2 + 1 L = lim . x →0 1 − cos xCâu IV. (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = SB = a, mặt phẳng (SAB) vuông góc với mặt phẳng (ABCD). Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCDCâu V (1 điểm) a, c > 0 b, a b c 3 Cho . CM R : + + ≤ a + b + c = abc bc( + a2 ) 1 ca( + b2 ) ab( + c2 ) 2 1 1CâuVI. (2 điểm) x −1 y z + 2 Trong không gian Oxyz cho đường thẳng d: = = và mặt phẳng ( P ) : 2 x + y + z − 1 = 0 2 1 −3 a) Tìm tọa độ giao điểm A của đường thẳng d với mặt phẳng (P ) . Viết phương trình của đường thẳng ∆ đi qua điểm A vuông góc với d và nằm trong (P ) . b) Viết phương trình mặt phẳng (Q) chứa d sao cho khoảng cách từ điểm I (1,0,0) tới (Q) bằng 2 . 3Câu VII (1 điểm) Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = e x + 1 , trục hoành và hai đường thẳng x = ln3, x = ln8. .................HẾT.............. Hocmai.vn – Ngôi trường chung của học trò Việt 1 TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 15 tháng 06 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 ĐÁP ÁN ĐỀ TỰ ÔN SỐ 10Câu I. (2 điểm). Cho hàm số y = − x3 − 3x2 + mx + 4, trong đó m là tham số thực. 3. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho, với m = 0. 4. Tìm tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trên khoảng (0 ; + ∞). HDG 1. Với m = 0, ta có hàm số y = – x3 – 3x2 + 4. Tập xác định: D = ¡ x = −2 • Chiều biến thiên: y’ = – 3x2 – 6x, y’ = 0 ⇔ x = 0 x < −2 y’ < 0 ⇔ x > 0 y’ > 0 ⇔ – 2 < x < 0 + Hàm số nghịch biến trên mỗi khoảng (− ∞ ; − 2) và (0 ; + ∞) + Hàm số đồng biến trên khoảng (− 2 ; 0) • Cực trị: + Hàm số y đạt cực tiểu tại x = – 2 và yCT = y(–2) = 0; + Hàm số y đạt cực đại tại x = 0 và yCĐ = y(0) = 4. • Giới hạn: xlim = +∞, →−∞ lim = −∞ x →+∞ • Bảng biến thiên: x −∞ −2 0 +∞ y − 0 + 0 − +∞ 4 y 0 −∞ • ĐĐồ thị: y Đổ thị cắt trục tung tại điểm (0 ; 4), 4 cắt trục hoành tại điểm (1 ; 0) và tiếp xúc với trục hoành tại điểm (− 2 ; 0) −3 −2 O 1 x 2. Hàm số đã cho nghịch biến trên khoảng (0 ; + ∞) ⇔ y’ = – 3x2 – 6x + m ≤ 0, ∀ x > 0 ⇔ 3x2 + 6x ≥ m, ∀ x > 0 (*) Ta có bảng biến thiên của hàm số y = 3x2 + 6x trên (0 x 0 +∞ ; + ∞) +∞ y 0 Page 2 of 6 TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 15 tháng 06 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Từ đó ta được : (*) ⇔ m ≤ 0. Câu II. (2 điểm) 1) Giải phương trình lượng ...