đồ án: thiết kế công nghệ CAD/CAM trong gia công cơ khí, chương 7
Số trang: 5
Loại file: pdf
Dung lượng: 629.76 KB
Lượt xem: 15
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Phương pháp phần tử hữu hạn là phương pháp số đặc biệt có hiệu quả để tìm dạng gần đúng của một hàm chưa biết trong miền xác định V của nó. Tuy nhiên phương pháp phần tử hữu hạn không tìm dạng xấp xỉ của hàm cần tìm trên toàn bộ miền V mà chỉ trong từng miền con Ve (phần tử) thuộc miền xác định V. Do đó, phương pháp này rất thích hợp với hàng loạt bài toán vật lý và kĩ thuật trong đó hàm cần tìm được xác định trên những miền phức tạp gồm...
Nội dung trích xuất từ tài liệu:
đồ án: thiết kế công nghệ CAD/CAM trong gia công cơ khí, chương 7 Chương 7: Nội dung của phương pháp phần tử hữu hạn Phương pháp phần tử hữu hạn là phương pháp số đặc biệt có hiệu quả để tìm dạng gần đúng của một hàm chưa biết trong miền xác định V của nó. Tuy nhiên phương pháp phần tử hữu hạn không tìm dạng xấp xỉ của hàm cần tìm trên toàn bộ miền V mà chỉ trong từng miền con Ve (phần tử) thuộc miền xác định V. Do đó, phương pháp này rất thích hợp với hàng loạt bài toán vật lý và kĩ thuật trong đó hàm cần tìm được xác định trên những miền phức tạp gồm nhiều vùng nhỏ có được tính hình học, vật lý khác nhau, chịu những điều kiện biên khác nhau. Phương pháp ra đời từ trực quan phân tích kết cấu, rồi được phát biểu một cách chặt chẽ và tổng quát như một phương pháp biến phân hay phương pháp dư có trọng số nhưng được xấp xỉ trên mỗi phần tử. Để giải một bài toán biên trong miền xác định V, bằng phép tam giác phân, ta chia thành một số hữu hạn các miền con Ve (e = 1,..., n) sao cho hai miền con bất kì không giao nhau và chỉ có thể chung nhau đỉnh hoặc các cạnh. Mỗi miền con Ve được gọi là một phần tử hữu hạn (phần tử hữu hạn). Người ta tìm nghiệm xấp xỉ của bài toán biên ban đầu trong một không gian hữu hạn chiều các hàm số thoả mãn điều kiện khả vi nhất định trên toàn miền V và hạn chế của chúng trên từng phần tử hữu hạn Ve là các đa thức. Có thể chọn cơ sở của không gian này gồm các hàm số ψ1(x),..., ψn(x) có giá trị trong một số hữu hạn phần tử hữu hạn Ve ở gần nhau. Nghiệm xấp xỉ của bài toán ban đầu được tìm dưới dạng: c1ψ1(x) + ... + cnψn(x) Trong đó các ck là các số cần tìm. Thông thường người ta đưa việc tìm các ck về việc giải một phương trình đại số với ma trận thưa (chỉ có các phần tử trên đường chéo chính và trên một số đường song song sát với đường chéo chính là khác không) nên dễ giải. Có thể lấy cạnh của các phần tử hữu hạn là đường thẳng hoặc đường cong để xấp xỉ các miền có dạng hình học phức tạp. Phương pháp phần tử hữu hạn có thể dùng để giải gần đúng các bài toán biên tuyến tính, phi tuyến và các bất phương trình. Thông thường với bài toán cơ vật rắn biến dạng và cơ kết cấu tùy theo ý nghĩa vật lý của hàm xấp xỉ, người ta có thể phân tích bài toán theo 3 dạng mô hình sau: Trong mô hình tương thích: Người ta xem chuyển vị là đại lượng cần tìm trước và hàm xấp xỉ biểu diễn gần đúng dạng phân bố của chuyển vị trong phân tử. Các ẩn số được xác định từ hệ phương trình được thiết lập trên cơ sở nguyên lý thế năng toàn phần dừng, hay nguyên lý biến phân Lagrange. Theo mô hình cân bằng: Hàm xấp xỉ được biểu diễn dạng gần đúng phân bố của ứng suất hay nội lự trong phần tử. Các ẩn số được xác định từ hệ phương trình thiết lập trên cơ sở nguyên lý năng lượng hệ toàn phần dừng hay nguyên lý biến phân về ứng suất (Nguyên lý Castigliano). Theo mô hình hỗn hợp: Coi các đại lượng chuyển vị ứng suất là 2 yếu tố độc lập. Các hàm xấp xỉ biểu diễn gần đúng dạng phân bố của cả chuyển vị lẫn ứng suất trong phân tử. Các ẩn số được xác định từ hệ phương trình thiết lập trên cơ sở nguyên lý biến phân Reisner. Sau khi tìm được các ẩn số bằng việc giải một phương trình đại số vừa nhận được thì cũng có nghĩa là ta tìm được các xấp xỉ biểu diễn đại lượng cần tìm trong tất cả các phần tử. Và từ đó cũng tìm ra được các đại lượng còn lại. 2.3.1 Trình tự phân tích bài toán theo phương pháp phần tử hữu hạn Bước 1 : Rời rạc hóa miền khảo sát Trong bước này miền khảo sát V được chia thành các miền con Ve hay thành các phần tử có dạng hình học thích hợp. Với các bài toán cụ thể số phần tử, hình dạng hình học của phần tử cũng như kích thước các phần tử được xác định rõ. Số điểm nút của mỗi phần tử không lấy được một cách tùy tiện mà tùy thuộc vào hàm xấp xỉ định chọn Bước 2 : Chọn hàm xấp xỉ thích hợp Vì đại lượng cần tìm chưa biết, nên ta giả thiết dạng xấp xỉ của nó sao cho đơn giản đối với tính toán bằng máy tính nhưng phải thỏa mãn các tiêu chuẩn hội tụ và thường chọn ở dạng đa thức. Rồi biểu diễn hàm xấp xỉ theo tập hợp giá trị và có thể cả các đạo hàm của nó tại các nút của phần tử {qe}. Bước 3: Xây dựng phương trình phần tử hay thiết lập ma trận độ cứng phần tử [Ke] và vectơ tải phần tử {Pe} Có nhiều cách thiết lập: trực tiếp hoặc sử dụng nguyên lý biến phân, hoặc các phương pháp biến phân… Kết quả nhận được có thể biểu diễn một cách hình thức như một phương trình phần tử: [Ke] .{qe} = {Pe} Bước 4: Ghép nối các phần tử trên mô hình tương thức mà kết quả là hệ thống phương trình [Ke] .{qe} = {Pe} Trong đó: [Ke]: Ma trận độ cứng tổng thể (hay ma trận hệ số toàn miền) {qe}: Vectơ tập hợp các giá trị đại lượng cần tìm tại các nút (còn gọi là vectơ chuyển vị nút tổng thể) {Pe}: Vectơ các số hạng tự do tổng thể (hay vectơ tải tổng thể ) Rồi sử dụng điều kiện biên của bài toán, mà kết quả nhận được là hệ phương trình sau: [K*] .{q*} = {P*} Đây chính là phương trình hệ thống hay còn gọi là hệ phương trình để giải Bước 5: Giải phương trình đại số [K*] .{q*} = {P*} Với bài toán tuyến tính việc giải hệ phương trình đại số là không khó khăn. Kết quả là tìm được chuyển vị của các nút. Nhưng với bài toán phi tuyến thì nghiệm sẽ đạt được sau một chuỗi các bước lặp mà sau mỗi bước ma trận cứng [Ke] thay đổi (trong bài toán phi tuyến vật lý) hay vectơ lực nút {Pe} thay đổi (trong bài toán phi tuyến hình học). ...
Nội dung trích xuất từ tài liệu:
đồ án: thiết kế công nghệ CAD/CAM trong gia công cơ khí, chương 7 Chương 7: Nội dung của phương pháp phần tử hữu hạn Phương pháp phần tử hữu hạn là phương pháp số đặc biệt có hiệu quả để tìm dạng gần đúng của một hàm chưa biết trong miền xác định V của nó. Tuy nhiên phương pháp phần tử hữu hạn không tìm dạng xấp xỉ của hàm cần tìm trên toàn bộ miền V mà chỉ trong từng miền con Ve (phần tử) thuộc miền xác định V. Do đó, phương pháp này rất thích hợp với hàng loạt bài toán vật lý và kĩ thuật trong đó hàm cần tìm được xác định trên những miền phức tạp gồm nhiều vùng nhỏ có được tính hình học, vật lý khác nhau, chịu những điều kiện biên khác nhau. Phương pháp ra đời từ trực quan phân tích kết cấu, rồi được phát biểu một cách chặt chẽ và tổng quát như một phương pháp biến phân hay phương pháp dư có trọng số nhưng được xấp xỉ trên mỗi phần tử. Để giải một bài toán biên trong miền xác định V, bằng phép tam giác phân, ta chia thành một số hữu hạn các miền con Ve (e = 1,..., n) sao cho hai miền con bất kì không giao nhau và chỉ có thể chung nhau đỉnh hoặc các cạnh. Mỗi miền con Ve được gọi là một phần tử hữu hạn (phần tử hữu hạn). Người ta tìm nghiệm xấp xỉ của bài toán biên ban đầu trong một không gian hữu hạn chiều các hàm số thoả mãn điều kiện khả vi nhất định trên toàn miền V và hạn chế của chúng trên từng phần tử hữu hạn Ve là các đa thức. Có thể chọn cơ sở của không gian này gồm các hàm số ψ1(x),..., ψn(x) có giá trị trong một số hữu hạn phần tử hữu hạn Ve ở gần nhau. Nghiệm xấp xỉ của bài toán ban đầu được tìm dưới dạng: c1ψ1(x) + ... + cnψn(x) Trong đó các ck là các số cần tìm. Thông thường người ta đưa việc tìm các ck về việc giải một phương trình đại số với ma trận thưa (chỉ có các phần tử trên đường chéo chính và trên một số đường song song sát với đường chéo chính là khác không) nên dễ giải. Có thể lấy cạnh của các phần tử hữu hạn là đường thẳng hoặc đường cong để xấp xỉ các miền có dạng hình học phức tạp. Phương pháp phần tử hữu hạn có thể dùng để giải gần đúng các bài toán biên tuyến tính, phi tuyến và các bất phương trình. Thông thường với bài toán cơ vật rắn biến dạng và cơ kết cấu tùy theo ý nghĩa vật lý của hàm xấp xỉ, người ta có thể phân tích bài toán theo 3 dạng mô hình sau: Trong mô hình tương thích: Người ta xem chuyển vị là đại lượng cần tìm trước và hàm xấp xỉ biểu diễn gần đúng dạng phân bố của chuyển vị trong phân tử. Các ẩn số được xác định từ hệ phương trình được thiết lập trên cơ sở nguyên lý thế năng toàn phần dừng, hay nguyên lý biến phân Lagrange. Theo mô hình cân bằng: Hàm xấp xỉ được biểu diễn dạng gần đúng phân bố của ứng suất hay nội lự trong phần tử. Các ẩn số được xác định từ hệ phương trình thiết lập trên cơ sở nguyên lý năng lượng hệ toàn phần dừng hay nguyên lý biến phân về ứng suất (Nguyên lý Castigliano). Theo mô hình hỗn hợp: Coi các đại lượng chuyển vị ứng suất là 2 yếu tố độc lập. Các hàm xấp xỉ biểu diễn gần đúng dạng phân bố của cả chuyển vị lẫn ứng suất trong phân tử. Các ẩn số được xác định từ hệ phương trình thiết lập trên cơ sở nguyên lý biến phân Reisner. Sau khi tìm được các ẩn số bằng việc giải một phương trình đại số vừa nhận được thì cũng có nghĩa là ta tìm được các xấp xỉ biểu diễn đại lượng cần tìm trong tất cả các phần tử. Và từ đó cũng tìm ra được các đại lượng còn lại. 2.3.1 Trình tự phân tích bài toán theo phương pháp phần tử hữu hạn Bước 1 : Rời rạc hóa miền khảo sát Trong bước này miền khảo sát V được chia thành các miền con Ve hay thành các phần tử có dạng hình học thích hợp. Với các bài toán cụ thể số phần tử, hình dạng hình học của phần tử cũng như kích thước các phần tử được xác định rõ. Số điểm nút của mỗi phần tử không lấy được một cách tùy tiện mà tùy thuộc vào hàm xấp xỉ định chọn Bước 2 : Chọn hàm xấp xỉ thích hợp Vì đại lượng cần tìm chưa biết, nên ta giả thiết dạng xấp xỉ của nó sao cho đơn giản đối với tính toán bằng máy tính nhưng phải thỏa mãn các tiêu chuẩn hội tụ và thường chọn ở dạng đa thức. Rồi biểu diễn hàm xấp xỉ theo tập hợp giá trị và có thể cả các đạo hàm của nó tại các nút của phần tử {qe}. Bước 3: Xây dựng phương trình phần tử hay thiết lập ma trận độ cứng phần tử [Ke] và vectơ tải phần tử {Pe} Có nhiều cách thiết lập: trực tiếp hoặc sử dụng nguyên lý biến phân, hoặc các phương pháp biến phân… Kết quả nhận được có thể biểu diễn một cách hình thức như một phương trình phần tử: [Ke] .{qe} = {Pe} Bước 4: Ghép nối các phần tử trên mô hình tương thức mà kết quả là hệ thống phương trình [Ke] .{qe} = {Pe} Trong đó: [Ke]: Ma trận độ cứng tổng thể (hay ma trận hệ số toàn miền) {qe}: Vectơ tập hợp các giá trị đại lượng cần tìm tại các nút (còn gọi là vectơ chuyển vị nút tổng thể) {Pe}: Vectơ các số hạng tự do tổng thể (hay vectơ tải tổng thể ) Rồi sử dụng điều kiện biên của bài toán, mà kết quả nhận được là hệ phương trình sau: [K*] .{q*} = {P*} Đây chính là phương trình hệ thống hay còn gọi là hệ phương trình để giải Bước 5: Giải phương trình đại số [K*] .{q*} = {P*} Với bài toán tuyến tính việc giải hệ phương trình đại số là không khó khăn. Kết quả là tìm được chuyển vị của các nút. Nhưng với bài toán phi tuyến thì nghiệm sẽ đạt được sau một chuỗi các bước lặp mà sau mỗi bước ma trận cứng [Ke] thay đổi (trong bài toán phi tuyến vật lý) hay vectơ lực nút {Pe} thay đổi (trong bài toán phi tuyến hình học). ...
Tìm kiếm theo từ khóa liên quan:
đồ án thiết kế công nghệ CAD/CAM gia công cơ khí Catia phần mềm Catia cơ cấu máy phần mềm thiết kế cơ khíGợi ý tài liệu liên quan:
-
Đề tài : Tính toán, thiết kế chiếu sáng sử dụng phần mềm DIALux
74 trang 200 0 0 -
Đồ án Thiết kế cơ khí: Tính toán thiết kế hệ thống thay dao tự động cho máy phay CNC
56 trang 154 0 0 -
Giáo trình trang bị điện trong máy cắt kim loại
236 trang 139 0 0 -
Luận văn tốt nghiệp: Hướng dẫn sử dụng phần mềm Catia V5
318 trang 123 0 0 -
Giáo trình công nghệ chế tạo máy - Chương 11: Các phương pháp gia công mặt phẳng
17 trang 115 0 0 -
77 trang 100 0 0
-
Đồ án: Vẽ và thiết kế mạch in bằng Orcad
32 trang 89 0 0 -
Đồ án Cung cấp điện: Thiết kế hệ thống cung cấp điện cho xưởng cơ khí
77 trang 84 0 0 -
Cơ sở thiết kế máy và chi tiết máy-Phần 1
42 trang 77 0 0 -
7 trang 74 0 0