Danh mục

Dự đoán dữ liệu dạng chuỗi sử dụng mạng thần kinh LSTM

Số trang: 8      Loại file: pdf      Dung lượng: 508.56 KB      Lượt xem: 16      Lượt tải: 0    
Jamona

Hỗ trợ phí lưu trữ khi tải xuống: 4,000 VND Tải xuống file đầy đủ (8 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Hiệu quả của việc phỏng đoán được đánh giá dựa vào hàm tính sai số RMSE. Sai sô càng thấp thì dự đoán càng chính xác. Để việc so sánh trở nên dễ nhìn, tác giả đã mô phỏng kết quả thành dạng biểu đồ so sánh giá trị thực và giá trị phỏng đoán. Kết quả cho thấy giá trị thực và giá trị phỏng đoán xấp xỉ bằng nhau. Chứng tỏ việc sử dụng LSTM cho dữ liệu dạng chuỗi sắp xếp theo thứ tự thời gian là hiệu quả và là tiền đề tốt để phát triển các bài toán tương tự mang tính ứng dụng cao hơn. Mời các bạn cùng tham khảo chi tiết nội dung bài viết!
Nội dung trích xuất từ tài liệu:
Dự đoán dữ liệu dạng chuỗi sử dụng mạng thần kinh LSTM DỰ ĐOÁN DỮ LIỆU DẠNG CHUỖI SỬ DỤNG MẠNG THẦN KINH LSTM Bùi Quốc Khánh* *Trường Đại học Hà Nội Tóm tắt: Mạng thần kinh hiện đang được ứng dụng rất phổ biến trong các ngành khoa học nhằm cải thiện năng suất và chất lượng của cuộc sống. Một trong những ứng dụng phổ biến là dự đoán kết quả của quá trình sản xuất dựa vào dữ liệu được thu thập trong thời gian trước đó. Bài báo sử dụng dữ liệu sản lượng sữa được cập nhật hàng tháng của một nhà máy sản xuất sữa và dựa vào đó, dự đoán sản lượng sữa trong khoảng thời gian trong tương lại. Dữ liệu được chia thành 2 phần: Một phần dùng cho việc tập huấn dữ liệu (training data) và một phần dùng để kiểm thử (testing data), dữ liệu được sắp xếp theo thứ tự thời gian nên testing data sẽ bao gồm các mốc thời gian trong tương lai so với training data. Tác giả sau đó sử dụng mạng thần kinh LSTM, được hỗ trợ bởi gói sklearn và Keras – bộ kit rất nổi tiếng trong việc hỗ trợ các thuật toán liên quan đến học máy – để dự đoán sản lượng của testing data. Hiệu quả của việc phỏng đoán được đánh giá dựa vào hàm tính sai số RMSE. Sai sô càng thấp thì dự đoán càng chính xác. Để việc so sánh trở nên dễ nhìn, tác giả đã mô phỏng kết quả thành dạng biểu đồ so sánh giá trị thực và giá trị phỏng đoán. Kết quả cho thấy giá trị thực và giá trị phỏng đoán xấp xỉ bằng nhau. Chứng tỏ việc sử dụng LSTM cho dữ liệu dạng chuỗi sắp xếp theo thứ tự thời gian là hiệu quả và là tiền đề tốt để phát triển các bài toán tương tự mang tính ứng dụng cao hơn. Từ khóa: Artificial Neural Networks (ANN), Sequential Data, Long Short-Term Memory (LSTM), Keras Abstract: This paper examines the outstanding application of Long Short-Term Memory (LSTM) Neural Network in predicting temporal data using Keras. The performance of the prediction is then evaluated by Root Mean Squared Error (RMSE) and the visualization of the result is also presented. Keywords: Artificial Neural Networks (ANN), Sequential Data, Long Short-Term Memory (LSTM), Keras SEQUENCE PREDICTION USING LONG SHORT- TERM MEMORY NEURAL NETWORK I. INTRODUCTION With the development of computer science in the last two decades, the Artificial Neural Network models have been widely used in various aspects of science and engineering because of the simplicity of its model structure. Researchers have applied various neural network model techniques such as using them alone or in combination with process-based models to reduce errors and improve the models’ prediction accuracy. Philip Doganis [1] reviewed papers on the application of Artificial Intelligence (AI) based on the hybrid model of the radial basis function (RBF) neural network architecture and a specially designed genetic algorithm indicated that the AI had exhibited significant progress in forecasting and modeling sales data of fresh milk provided by a major manufacturing company of dairy products. This paper also recommends the potential application of ANNs in modeling and forecasting milk production given a time series data. Recently, owing to the breakthrough in the field of computational science, deep learning or deep neural network (DNN) methods based on ANNs have received a growing interest both academically and practicality from scientists [2]. Moreover, the Long Short-Term Memory (LSTM) neural network, one of the state-of-the-art applications of DNN, has been successfully applied in various fields (especially for time sequence problems) such as: Speech recognition [3], machine translation [4] [5], language modeling [6], tourism field [7] [8], stock prediction [9], and rainfall-runoff simulation [10] [11]. Several LSTM studies listed above suggest that LSTM-based models have been successfully used in various fields and can be applicable to milk production forecasting. II. METHODOLOGY A. Dataset The dataset used in this paper is the report of monthly milk production from January 1962 to December 1975 in UK. There are 2 features: Month which is in yyyy- mm form and Production which is calculated in pound. The dataset is then split into training set and test set to served for the training and test phases, respectively. The data has total 168 observation and is clean, which is suitable for research purpose. B. Technology The encoder-decoder architecture has been implemented using Googles framework for distributed machine learning TensorFlow. We used Keras on top of TensorFlow. Keras was chosen as it is designed for fast prototyping and experimentation with a simple API. It allows to configure NNs in a modular way by combining different layers, activation functions, loss functions, and optimizers, etc. Keras provides out of the box solutions for most of the standard deep learning building blocks. However, if someone wants to build a custom or novel implementation, Keras API could be quite limited, and libraries like TensorFlow will be a better choice. For evaluation, different metrics have been used, that were partly taken from the scikit-learn library for Python. C. Long Short-Term Memory (LSTM) Neural Networks A typical LSTM network is comprised of memory blocks called cells. Two states are being transferred to the next cell, the cell state and the hidden state. The cell state is the main chain of data flow, which allows the data to flow forward essentially 5 unchanged. However, some linear transformations may occur. The data can be added to or removed from the cell state via sigmoid gates. A gate is similar to a layer or a series of matrix operations, which contain different individual weights. LSTMs are designed to avoid the long-term dependency problem because ...

Tài liệu được xem nhiều: