Experimental research and artificial neural network based prediction model on compressive strength of hardened cement pastes containing fly ash and silica fume at high temperatures
Số trang: 16
Loại file: pdf
Dung lượng: 27.65 MB
Lượt xem: 9
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
This study constructed two predictive models using artificial neural networks to forecast the compressive strength based on input parameters including data on fly ash, silica fume and temperature (1); to predict the contents of fly ash and silica fume based on input parameters of compressive strength and working temperature (2).
Nội dung trích xuất từ tài liệu:
Experimental research and artificial neural network based prediction model on compressive strength of hardened cement pastes containing fly ash and silica fume at high temperatures
Nội dung trích xuất từ tài liệu:
Experimental research and artificial neural network based prediction model on compressive strength of hardened cement pastes containing fly ash and silica fume at high temperatures
Tìm kiếm theo từ khóa liên quan:
Civil engineering Fly ash Silica fume Artificial neural network Heat resistance binder Self-autoclaving process Hardened cement paste Compressive strengthTài liệu liên quan:
-
Ebook Civil engineering reference manual for the PE exam (7th edition): Part 1
627 trang 96 0 0 -
Short-term load forecasting using long short-term memory network
4 trang 50 0 0 -
Applications of artificial neural network in textiles
10 trang 33 0 0 -
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 8 - Nguyễn Nhật Quang
69 trang 32 0 0 -
Artificial intelligence approach to predict the dynamic modulus of asphalt concrete mixtures
10 trang 31 0 0 -
Particle Swarm Optimization using ε constraint-handling method developed in Python
7 trang 30 0 0 -
8 trang 28 0 0
-
Compressibility characteristics of clays in the Red River Delta
17 trang 27 0 0 -
Ebook Sustainable construction and building materials: Select proceedings of ICSCBM 2018 - Part 2
446 trang 26 0 0 -
Ebook Rock mass classification: A practical approach in civil engineering - Part 2
132 trang 26 0 0