Giải tích mạng - Chương 2
Số trang: 17
Loại file: pdf
Dung lượng: 402.06 KB
Lượt xem: 20
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Nhiều hệ thống vật lý phức tạp được biểu diễn bởi phương trình vi phân nó không có thể giải chính xác bằng giải tích. Trong kỹ thuật, người ta thường sử dụng các giá trị thu được bằng việc giải gần đúng của các hệ phương trình vi phân bởi phương pháp số hóa. Theo cách đó, lời giải của phương trình vi phân đúng là một giai đoạn quan trọng trong giải tích số. Trong trường hợp tổng quát, thứ tự của việc làm tích phân số là quá trình từng bước chính xác chuổi giá trị cho...
Nội dung trích xuất từ tài liệu:
Giải tích mạng - Chương 2 GIẢI TÍCH MẠNG CHƯƠNG 2 GIẢI PHƯƠNG TRÌNH VI PHÂN BẰNG PHƯƠNG PHÁP SỐ 2.1. GIỚI THIỆU. Nhiều hệ thống vật lý phức tạp được biểu diễn bởi phương trình vi phân nó không có thể giải chính xác bằng giải tích. Trong kỹ thuật, người ta thường sử dụng các giá trị thu được bằng việc giải gần đúng của các hệ phương trình vi phân bởi phương pháp số hóa. Theo cách đó, lời giải của phương trình vi phân đúng là một giai đoạn quan trọng trong giải tích số. Trong trường hợp tổng quát, thứ tự của việc làm tích phân số là quá trình từng bước chính xác chuổi giá trị cho mỗi biến phụ thuộc tương ứng với một giá trị của biến độc lập. Thường thủ tục là chọn giá trị của biến độc lập trong một khoảng cố định. Độ chính xác cho lời giải bởi tích phân số phụ thuộc cả hai phương pháp chọn và kích thước của khoảng giá trị. Một số phương pháp thường xuyên dùng được trình bày trong các mục sau đây. 2.2. GIẢI PHƯƠNG TRÌNH VI PHÂN BẰNG PHƯƠNG PHÁP SỐ. 2.2.1 Phương pháp Euler: Cho phương trình vi phân bậc nhất. dy = f ( x, y) (2.1) dx y = g(x,c) y Hình 2.1: Đồ thị của hàm số từ bài giải phương trình vi phân ∆y y0 ∆x x x0 0 Khi x là biến độc lập và y là biến phụ thuộc, nghiệm phương trình (2.1) sẽ có dạng: y = g(x,c) (2.2) Với c là hằng số đã được xác định từ lý thuyết trong điều kiện ban đầu. Đường cong miêu tả phương trình (2.2) được trình bày trong hình (2.1). Từ chỗ tiếp xúc với đường cong, đoạn ngắn có thể giả sử là một đoạn thẳng. Theo cách đó, tại mỗi điểm riêng biệt (x0,y0) trên đường cong, ta có: dy ∆y ≈ ∆x dx 0 dy Với là độ dốc của đường cong tại điểm (x0,y0). Vì thế, ứng với giá trị ban đầu x0 và y0, giá dx 0 trị mới của y có thể thu được từ lý thuyết là ∆x: Trang 12 GIẢI TÍCH MẠNG dy y1 = y 0 + y1 = y 0 + ∆y h (đặt h = ∆x) hay dx 0 Khi ∆y là số gia của y tương ứng với một số gia của x. Tương tự, giá trị thứ hai của y có thể xác định như sau. dy y 2 = y1 + h dx 1 y y= g(x,c) y3 y2 Hình 2.2 : Đồ thị của lời giải xấp xỉ y1 cho phương trình vi phân bằng phương pháp Euler y0 h h h dy x 0= f ( x1 , y1 ) x0 Khi x3 x1 x2 dx 1 Quá trình có thể tính tiếp tục, ta được: dy y3 = y 2 + h dx 2 dy y 4 = y3 + h dx 3 ........................... Bảng giá trị x và y cung cấp cho toàn bộ bài giải phương trình (2.1). Minh họa phương pháp như hình 2.2. 2.2.2. Phương pháp biến đổi Euler. Trong khi ứng dụng phương pháp Euler, giá trị dy/dx của khoảng giả thiết tính toán bắt đầu vượt ra ngoài khoảng cho phép. Sự thay thế đó có thể thu được bằng cách tính toán giá trị mới của y cho x1 như trước. x1 = x0 + h dy y1( 0) = y 0 + h dx 0 dy Dùng giá trị mới x1 và y1(0) thay vào phương trình (2.1) để tính toán gần đúng giá trị của t ại dx 1 cuối khoảng. (0) dy = f ( x1 , y1( 0 ) ) dx 1 (0) dy dy Sau đó tận dụng giá trị y1(1) có thể tìm thấy bởi dùng trung bình của và như sau: dx 0 dx 1 Trang 13 GIẢI TÍCH MẠNG ⎛ dy dy ⎞ (0) ⎜ ⎟ + ⎜ dx 0 dx 1 ⎟ y1(1) = y 0 + ⎜ ⎟h 2 ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ Dùng x1 và y1 , giá trị xấp xỉ thứ ba y1(2) có thể thu được bởi quá trình tương tự như sau: (1) ⎛ dy dy ⎞ (1) ⎜ ⎟ + ⎜ dx 0 dx 1 ⎟ y1 = y 0 + ⎜ ( 2) ⎟h 2 ⎜ ⎟ ...
Nội dung trích xuất từ tài liệu:
Giải tích mạng - Chương 2 GIẢI TÍCH MẠNG CHƯƠNG 2 GIẢI PHƯƠNG TRÌNH VI PHÂN BẰNG PHƯƠNG PHÁP SỐ 2.1. GIỚI THIỆU. Nhiều hệ thống vật lý phức tạp được biểu diễn bởi phương trình vi phân nó không có thể giải chính xác bằng giải tích. Trong kỹ thuật, người ta thường sử dụng các giá trị thu được bằng việc giải gần đúng của các hệ phương trình vi phân bởi phương pháp số hóa. Theo cách đó, lời giải của phương trình vi phân đúng là một giai đoạn quan trọng trong giải tích số. Trong trường hợp tổng quát, thứ tự của việc làm tích phân số là quá trình từng bước chính xác chuổi giá trị cho mỗi biến phụ thuộc tương ứng với một giá trị của biến độc lập. Thường thủ tục là chọn giá trị của biến độc lập trong một khoảng cố định. Độ chính xác cho lời giải bởi tích phân số phụ thuộc cả hai phương pháp chọn và kích thước của khoảng giá trị. Một số phương pháp thường xuyên dùng được trình bày trong các mục sau đây. 2.2. GIẢI PHƯƠNG TRÌNH VI PHÂN BẰNG PHƯƠNG PHÁP SỐ. 2.2.1 Phương pháp Euler: Cho phương trình vi phân bậc nhất. dy = f ( x, y) (2.1) dx y = g(x,c) y Hình 2.1: Đồ thị của hàm số từ bài giải phương trình vi phân ∆y y0 ∆x x x0 0 Khi x là biến độc lập và y là biến phụ thuộc, nghiệm phương trình (2.1) sẽ có dạng: y = g(x,c) (2.2) Với c là hằng số đã được xác định từ lý thuyết trong điều kiện ban đầu. Đường cong miêu tả phương trình (2.2) được trình bày trong hình (2.1). Từ chỗ tiếp xúc với đường cong, đoạn ngắn có thể giả sử là một đoạn thẳng. Theo cách đó, tại mỗi điểm riêng biệt (x0,y0) trên đường cong, ta có: dy ∆y ≈ ∆x dx 0 dy Với là độ dốc của đường cong tại điểm (x0,y0). Vì thế, ứng với giá trị ban đầu x0 và y0, giá dx 0 trị mới của y có thể thu được từ lý thuyết là ∆x: Trang 12 GIẢI TÍCH MẠNG dy y1 = y 0 + y1 = y 0 + ∆y h (đặt h = ∆x) hay dx 0 Khi ∆y là số gia của y tương ứng với một số gia của x. Tương tự, giá trị thứ hai của y có thể xác định như sau. dy y 2 = y1 + h dx 1 y y= g(x,c) y3 y2 Hình 2.2 : Đồ thị của lời giải xấp xỉ y1 cho phương trình vi phân bằng phương pháp Euler y0 h h h dy x 0= f ( x1 , y1 ) x0 Khi x3 x1 x2 dx 1 Quá trình có thể tính tiếp tục, ta được: dy y3 = y 2 + h dx 2 dy y 4 = y3 + h dx 3 ........................... Bảng giá trị x và y cung cấp cho toàn bộ bài giải phương trình (2.1). Minh họa phương pháp như hình 2.2. 2.2.2. Phương pháp biến đổi Euler. Trong khi ứng dụng phương pháp Euler, giá trị dy/dx của khoảng giả thiết tính toán bắt đầu vượt ra ngoài khoảng cho phép. Sự thay thế đó có thể thu được bằng cách tính toán giá trị mới của y cho x1 như trước. x1 = x0 + h dy y1( 0) = y 0 + h dx 0 dy Dùng giá trị mới x1 và y1(0) thay vào phương trình (2.1) để tính toán gần đúng giá trị của t ại dx 1 cuối khoảng. (0) dy = f ( x1 , y1( 0 ) ) dx 1 (0) dy dy Sau đó tận dụng giá trị y1(1) có thể tìm thấy bởi dùng trung bình của và như sau: dx 0 dx 1 Trang 13 GIẢI TÍCH MẠNG ⎛ dy dy ⎞ (0) ⎜ ⎟ + ⎜ dx 0 dx 1 ⎟ y1(1) = y 0 + ⎜ ⎟h 2 ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ Dùng x1 và y1 , giá trị xấp xỉ thứ ba y1(2) có thể thu được bởi quá trình tương tự như sau: (1) ⎛ dy dy ⎞ (1) ⎜ ⎟ + ⎜ dx 0 dx 1 ⎟ y1 = y 0 + ⎜ ( 2) ⎟h 2 ⎜ ⎟ ...
Tìm kiếm theo từ khóa liên quan:
kỹ thuật điện hệ thống điện mạng lưới điện phương trình vi phân Giải tích mạngGợi ý tài liệu liên quan:
-
58 trang 331 2 0
-
Kỹ Thuật Đo Lường - TS. Nguyễn Hữu Công phần 6
18 trang 305 0 0 -
96 trang 283 0 0
-
Giáo trình Kỹ thuật điện (Nghề: Điện tử công nghiệp - Trung cấp) - Trường Cao đẳng Cơ giới
124 trang 237 2 0 -
Luận văn: Thiết kế xây dựng bộ đếm xung, ứng dụng đo tốc độ động cơ trong hệ thống truyền động điện
63 trang 236 0 0 -
Đồ án môn Điện tử công suất: Thiết kế mạch DC - DC boost converter
14 trang 236 0 0 -
ĐỒ ÁN TỐT NGHIỆP: THIẾT KẾ HỆ THỐNG CUNG CẤP ĐIỆN CHO NHÀ MÁY SẢN XUẤT GẠCH MEN SHIJAR
63 trang 230 0 0 -
79 trang 226 0 0
-
Đồ án: Kỹ thuật xử lý ảnh sử dụng biến đổi Wavelet
41 trang 218 0 0 -
Luận văn đề tài : Thiết kế phần điện áp một chiều cho bộ UPS, công suất 4KVA, điện áp ra 110KV
89 trang 191 0 0