Giáo trình hình thành ứng dụng phân tích kỹ thuật tổng hợp đầu tư của từng nguồn vốn p5
Số trang: 10
Loại file: pdf
Dung lượng: 737.46 KB
Lượt xem: 11
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tham khảo tài liệu 'giáo trình hình thành ứng dụng phân tích kỹ thuật tổng hợp đầu tư của từng nguồn vốn p5', tài chính - ngân hàng, tài chính doanh nghiệp phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Giáo trình hình thành ứng dụng phân tích kỹ thuật tổng hợp đầu tư của từng nguồn vốn p5 V3 = V3 – D3 = V0 – 3D = V0 - 3 Tổng quát: Dư nợ đầu kỳ p, Vp: Vp = V0 - p => Số dư nợ đầu các kỳ lập thành một cấp số cộng với số hạng ban đầu là V0, công sai là: - - Liên hệ tiền lãi trả ở các kỳ Ip = Vp-1 x i = (Vp + D) x i = Vp x i + D x i = Ip+1 + xi Ip+1 = Ip - x i ð Tiền lãi trả ở các kỳ lập thành một cấp số cộng với số hạng ban đầu là I1, công sai là - x i. - Liên hệ giữa các kỳ khoản ap+1 = Ip+1 + D a p = Ip + D => ap+1 – ap = Ip+1 – Ip = Ip - x i – Ip = - x i => ap+1 = ap - x i => Các kỳ khoản lập thành một cấp số cộng với số hạng ban đầu là a1 và công sai là - x i. c. Bảng hoàn trái Ví dụ: Một khoản vốn vay 1 tỷ, lãi suất 10%/năm, trả trong 8 năm với phương thức trả nợ dần định kỳ với phần trả nợ gốc bằng nhau. Lập bảng hoàn trái cho khoản vốn vay trên. Giải: V0 = 1.000 triệu đồng i = 10%/năm n = 8 năm Số nợ gốc trả mỗi kỳ: D = = 125 triệu đồng. Dư nợ đầu kỳ: Vk = Vk-1 – D Lãi vay phải trả trong kỳ k: Ik = Vk-1 x i Số tiền phải trả trong kỳ k: a k = Ik + D Bảng hoàn trái Đơn vị tính: Triệu đồng Năm Dư nợ đầu Tiền lãi vay Vốn gốc trả Kỳ khoản kỳ, Vk-1 trả trong kỳ, Ik trong kỳ, Dk trả nợ, ak k 1 1.000 100 125 225 2 875 87,5 125 212,5 3 750 75 125 200 4 625 62,5 125 187,5 5 500 50 125 175 6 375 37,5 125 162,5 7 250 25 125 150 8 125 12,5 125 137,5 Tổng cộng 1.000 6.2.3.3. Trả nợ dần định kỳ với tiền lãi trả nhiều lần trong một kỳ, phần nợ gốc trả một lần cuối mỗi kỳ a. Phương thức hoàn trả - Tiền lãi vay sẽ được trả nhiều lần trong kỳ. - Khấu hao nợ vay trả một lần vào cuối kỳ. b. Đồ thị của một kỳ trả nợ p Giả sử tiền lãi trả m lần trong kỳ. Lúc này, lãi suất vay chính là lãi suất danh nghĩa i(m). Do đó, lãi suất áp dụng cho mỗi kỳ nhỏ m chính là i = Ip(m) = Vp-1 x i - Tiền lãi trả trong kỳ p: - Số tiền lãi trả một lần trong kỳ: Ip = Ip1 = Ip2 = … = Ipm = = Vp-1 - Nợ gốc trả trong kỳ: Dp ap = Dp + Ip(m) = Dp + m x Ip - Số tiền thanh toán trong kỳ: c. Lãi suất thực người đi vay phải chịu Lãi suất thực người đi vay phải chịu chính là lãi suất hiệu dụng tương ứng lãi suất danh nghĩa i(m). it = (1+ )m -1 Ví dụ: Một khoản vay 100 triệu, lãi suất 10%/năm, trả trong 5 năm theo phương thức: vốn gốc trả vào cuối mỗi năm, lãi trả 2 lần trong năm. Tính lãi suất thực sự người đi vay phải chịu. Giải: i(2) = 10%/năm Lãi suất thực mà người vay phải chịu: it = (1+ )m -1 = (1+ )2 -1= 10,25%/năm. d. Bảng hoàn trái Giống bảng hoàn trái của các phương thức thanh toán trên. 6.2.3.4.Trả nợ dần định kỳ với kỳ khoản cố định trong điều kiền lãi suất thay đổi Trong điều kiện tiền tệ không ổn định thì việc vay (cho vay) theo một lãi suất không đổi trong suất thời hạn vay có thể gây thiệt hại đối với người đi vay cũng như người cho vay. Vì vậy, để bảo vệ quyền lợi cho hai bên, có thể áp dụng lãi suất thay đổi trong những giai đoạn khác nhau. a. Đồ thị biểu diễn V0: Tổng số nợ vay a: Số tiền trả mỗi kỳ (kỳ khoản đều). n: Số kỳ trả nợ. Trong n kỳ có: - m1 kỳ đầu ứng với lãi suất i1. - m2 kỳ thứ hai với lãi suất i2. … - mp kỳ thứ p với lãi suất ip. - mf kỳ thứ r với lãi suất ir. => n = m1 + m2 + … + mp + mr M1, M2, …, Mp, Mr : số vốn vay được đảm bảo bằng m1, m2, … , mp, mr kỳ trả tiền. b. Các công thức liên hệ M1 = a x ...
Nội dung trích xuất từ tài liệu:
Giáo trình hình thành ứng dụng phân tích kỹ thuật tổng hợp đầu tư của từng nguồn vốn p5 V3 = V3 – D3 = V0 – 3D = V0 - 3 Tổng quát: Dư nợ đầu kỳ p, Vp: Vp = V0 - p => Số dư nợ đầu các kỳ lập thành một cấp số cộng với số hạng ban đầu là V0, công sai là: - - Liên hệ tiền lãi trả ở các kỳ Ip = Vp-1 x i = (Vp + D) x i = Vp x i + D x i = Ip+1 + xi Ip+1 = Ip - x i ð Tiền lãi trả ở các kỳ lập thành một cấp số cộng với số hạng ban đầu là I1, công sai là - x i. - Liên hệ giữa các kỳ khoản ap+1 = Ip+1 + D a p = Ip + D => ap+1 – ap = Ip+1 – Ip = Ip - x i – Ip = - x i => ap+1 = ap - x i => Các kỳ khoản lập thành một cấp số cộng với số hạng ban đầu là a1 và công sai là - x i. c. Bảng hoàn trái Ví dụ: Một khoản vốn vay 1 tỷ, lãi suất 10%/năm, trả trong 8 năm với phương thức trả nợ dần định kỳ với phần trả nợ gốc bằng nhau. Lập bảng hoàn trái cho khoản vốn vay trên. Giải: V0 = 1.000 triệu đồng i = 10%/năm n = 8 năm Số nợ gốc trả mỗi kỳ: D = = 125 triệu đồng. Dư nợ đầu kỳ: Vk = Vk-1 – D Lãi vay phải trả trong kỳ k: Ik = Vk-1 x i Số tiền phải trả trong kỳ k: a k = Ik + D Bảng hoàn trái Đơn vị tính: Triệu đồng Năm Dư nợ đầu Tiền lãi vay Vốn gốc trả Kỳ khoản kỳ, Vk-1 trả trong kỳ, Ik trong kỳ, Dk trả nợ, ak k 1 1.000 100 125 225 2 875 87,5 125 212,5 3 750 75 125 200 4 625 62,5 125 187,5 5 500 50 125 175 6 375 37,5 125 162,5 7 250 25 125 150 8 125 12,5 125 137,5 Tổng cộng 1.000 6.2.3.3. Trả nợ dần định kỳ với tiền lãi trả nhiều lần trong một kỳ, phần nợ gốc trả một lần cuối mỗi kỳ a. Phương thức hoàn trả - Tiền lãi vay sẽ được trả nhiều lần trong kỳ. - Khấu hao nợ vay trả một lần vào cuối kỳ. b. Đồ thị của một kỳ trả nợ p Giả sử tiền lãi trả m lần trong kỳ. Lúc này, lãi suất vay chính là lãi suất danh nghĩa i(m). Do đó, lãi suất áp dụng cho mỗi kỳ nhỏ m chính là i = Ip(m) = Vp-1 x i - Tiền lãi trả trong kỳ p: - Số tiền lãi trả một lần trong kỳ: Ip = Ip1 = Ip2 = … = Ipm = = Vp-1 - Nợ gốc trả trong kỳ: Dp ap = Dp + Ip(m) = Dp + m x Ip - Số tiền thanh toán trong kỳ: c. Lãi suất thực người đi vay phải chịu Lãi suất thực người đi vay phải chịu chính là lãi suất hiệu dụng tương ứng lãi suất danh nghĩa i(m). it = (1+ )m -1 Ví dụ: Một khoản vay 100 triệu, lãi suất 10%/năm, trả trong 5 năm theo phương thức: vốn gốc trả vào cuối mỗi năm, lãi trả 2 lần trong năm. Tính lãi suất thực sự người đi vay phải chịu. Giải: i(2) = 10%/năm Lãi suất thực mà người vay phải chịu: it = (1+ )m -1 = (1+ )2 -1= 10,25%/năm. d. Bảng hoàn trái Giống bảng hoàn trái của các phương thức thanh toán trên. 6.2.3.4.Trả nợ dần định kỳ với kỳ khoản cố định trong điều kiền lãi suất thay đổi Trong điều kiện tiền tệ không ổn định thì việc vay (cho vay) theo một lãi suất không đổi trong suất thời hạn vay có thể gây thiệt hại đối với người đi vay cũng như người cho vay. Vì vậy, để bảo vệ quyền lợi cho hai bên, có thể áp dụng lãi suất thay đổi trong những giai đoạn khác nhau. a. Đồ thị biểu diễn V0: Tổng số nợ vay a: Số tiền trả mỗi kỳ (kỳ khoản đều). n: Số kỳ trả nợ. Trong n kỳ có: - m1 kỳ đầu ứng với lãi suất i1. - m2 kỳ thứ hai với lãi suất i2. … - mp kỳ thứ p với lãi suất ip. - mf kỳ thứ r với lãi suất ir. => n = m1 + m2 + … + mp + mr M1, M2, …, Mp, Mr : số vốn vay được đảm bảo bằng m1, m2, … , mp, mr kỳ trả tiền. b. Các công thức liên hệ M1 = a x ...
Tìm kiếm theo từ khóa liên quan:
giáo trình kế toán kỹ thuật kế toán thủ thuật kế toán phương pháp học kế toán bí quyết học kế toánGợi ý tài liệu liên quan:
-
10 trang 354 0 0
-
HUA Giáo trình nguyên lí kế toán - Chương 7
43 trang 152 0 0 -
Giáo trình Tổ chức hạch toán kế toán (Giáo trình đào tạo từ xa): Phần 1
66 trang 54 0 0 -
quá trình hình thành quy trình hạch toán theo lương và các khoản trích theo lương p8
10 trang 50 0 0 -
104 trang 49 0 0
-
CÁC VẤN ĐỀ CHÍNH TRONG BẢN BÁO CÁO TÀI CHÍNH
3 trang 37 0 0 -
Bài tập tổ chức công tác kế toán
4 trang 37 0 0 -
8 trang 37 0 0
-
BÀI TẬP KẾ TOÁN DOANH NGHIỆP - PHẦN TIỀN MẶT
166 trang 29 0 0 -
3 trang 28 0 0