Thông tin tài liệu:
Tham khảo tài liệu giáo trình kĩ thuật nhiệt_chương 9, kỹ thuật - công nghệ, điện - điện tử phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
giáo trình kĩ thuật nhiệt_chương 9 .Ch−¬ng 9. dÉn nhiÖt æn ®Þnh9.1. ®Þnh luËt fourier vµ hÖ sè dÉn nhiÖt9.1.1 §Þnh luËt fourier vµ hÖ sè dÉn nhiÖt Dùa vµo thuyÕt ®éng häc ph©n tö, Fourier ®· chøng minh ®Þnh luËt c¬ b¶ncña dÉn nhiÖt nh− sau: Vec t¬ dßng nhiÖt tû lÖ thuËn víi vect¬ gradient nhiÖt ®é. BiÓu thøc cña ®Þnh luËt cã d¹ng vect¬ lµ: q = −λgr adt , d¹ng v« h−íng lµ: dt q = −λgradt = −λ . tn Theo ®Þnh luËt nµy, nhiÖt l−¬ng Q ®−îc dÉn qua diÖn tÝch F cña mÆt ®¼ngnhiÖt trong 1 gi©y ®−îc tÝnh theo c«ng thøc: ∂t Q = −∫ λ .dF ∂n F Khi gradt kh«ng ®æi trªn bÒ mÆt F, c«ng thøc cã d¹ng: ∂t Q = −λ .dF ∂n §Þnh luËt Fourier lµ ®Þnh luËtc¬ b¶n ®Ó tÝnh l−îng nhiÖt trao ®æi b»ngph−¬ng thøc dÉn nhiÖt.9.1.2 HÖ sè dÉn nhiÖt λ q HÖ sè cña ®Þnh luËt Fourier λ = , W/mK ®−îc gäi lµ hÖ sè dÉn nhiÖt. gradt HÖ sè dÉn nhiÖt λ ®Æc tr−ng cho kh¶ n¨ng dÉn nhiÖt cña vËt. Gi¸ trÞ cña λphô thuéc vµo b¶n chÊt vµ kÕt cÊu cña vËt liÖu, vµo ®é Èm vµ nhiÖt ®é, ®−îc x¸c®Þnh b»ng thùc nghiÖm víi tõng vËt liÖu vµ cho s½n theo quan hÖ víi nhiÖt ®é t¹ib¶ng c¸c th«ng sè vËt lý cña vËt liÖu.9.2. Ph−¬ng tr×nh vi ph©n dÉn nhiÖt9.2.1. Néi dung cña ph−¬ng tr×nh vi ph©n dÉn nhiÖt Ph−¬ng tr×nh vi ph©n dÉn nhiÖt lµ ph−¬ng tr×nh c©n b»ng nhiÖt cho métph©n tè bÊt kú n»m hoµn toµn bªn trong vËt dÉn nhiÖt.9.2.2. ThiÕt lËp ph−¬ng tr×nh XÐt c©n b»ng nhiÖt cho ph©n tè dV bªn trong vËt dÉn, cã khèi l−îng riªngρ, nhiÖt dung riªng Cv, hÖ sè dÉn nhiÖt λ, dßng nhiÖt ph©n tè lµ q , c«ng suÊt ph¸tnhiÖt qv. 95 Theo ®Þnh luËt b¶o toµn n¨ng l−îng, ta cã: [§é biÕn thiªn néi n¨ng cña dV] = [HiÖu sè nhiÖt l−îng (vµo-ra) dV] +[l−îng nhiÖt sinh ra trong dV], tøc lµ: ∂t ρ.dV.C v = −divq.dV.dτ + q v .dV.dτ , ∂τ hay: ∂t q 1 = divq + v ∂τ ρ.C v ρ.C v Theo ®Þnh luËt fourier q = −λgr adt,khi λ = const ta cã: divq = div(−λgr adt ) = −λdiv(gr adt )Trong ®ã: ∂ ⎛ ∂t ⎞ ∂ ⎛ ∂t ⎞ ∂ ⎛ ∂t ⎞ ⎜ ⎟+ ⎜ ⎟+ ⎜ ⎟=∇ t, 2 Div(gr a dt) = ∂x ⎝ ∂x ⎠ ∂y ⎜ ∂y ⎟ ∂z ⎝ ∂z ⎠ ⎝⎠Víi: ⎧ ∂2t ∂2t ∂2t ⎪ 2 + 2 + 2 , (trong to¹ dé vu«ng gãc víi x, y, z) ⎪ ∂x ∂y ∂z ∇ t=⎨ 2 2 ∂ t 1 ∂t 1 ∂ 2 t ∂ 2 t ⎪ +. + + , (trong to¹ dé trô r, ϕ, z) ⎪ ∂r 2 r ∂r r 2 ∂ϕ 2 ∂z 2 ⎩ Ph−¬ng tr×nh vi ph©n dÉn nhiÖt lµ ph−¬ng tr×nh kÕt hîp hai ®Þnh luËt nãitrªn, cã d¹ng: ∂t λ ⎛ q⎞ q = ∇ 2 t + v = a⎜ ∇ 2 t + v ⎟ ∂τ ρ.C v ρ.C v λ⎠ ⎝ λ , m2/s., ®−îc gäi lµ hÖ sè khuyÕch t¸n nhiÖt, ®Æc tr−ng cho møc ®évíi a = ρ.C vtiªu t¸n nhiÖt trong vËt.9.2.3. C¸c d¹ng ®Æc biÖt cña ph−¬ng tr×nh vi ph©n dÉn nhiÖt víi qv = 0 ∂t = 0 , ph−¬ng tr×nh cã d¹ng ∇ 2 t = 0 . Trong v¸ch Khi vËt æn ®Þnh nhiÖt, ∂τph¼ng réng v« h¹n vµ æn ®Þnh nhiÖt cã λ = const, tr−êng nhiÖt ®é t(x) ®−îc x¸c d2t = 0 . Trong ®iÒu kiÖn λ = const vµ æn ®Þnh nhiÖt,®Þnh theo ph−¬ng tr×nh dx 2tr−êng nhiÖt ®é t(r) trong v¸ch trô trßn dµI v« h¹n ®−îc x¸c ®Þnh theo ph−¬ngtr×nh vi ph©n dÉn nhiÖt trong to¹ ®é trô: d 2 t 1 dt + = 0. dx 2 r dr9.3. C¸c ®iÒu kiÖn ®¬n trÞ 96 Ph−¬ng tr×nh vi ph©n dÉn nhiÖt nãi chung lµ ph−¬ng tr×nh ®¹o hµm riªngcÊp 2, chøa Èn lµ hµm ph©n bè nhiÖt ®é t(x, y, z, τ). NghiÖm tæng quat cña nã chøanhiÒu h»ng sè tuú ý chän. ®Ó x¸c ®Þnh duy nhÊt nghiÖm riªng cña ph−¬ng tr×nh vi ph©n dÉn nhiÖt, cÇnph¶i cho tr−íc mét sè ®iÒu kiÖn, gäi lµ c¸c ®iÒu kiÖn ®¬n trÞ.9.3.1. Ph©n lo¹i c¸c ®iÒu kiÖn ®¬n trÞ Tuú theo néi dung, c¸c ®iÒu kiÖn ®¬n trÞ bao gåm 4 lo¹i ...