Danh mục

Giáo trình kinh tế lượng (Chương 6: Lựa chọn dạng hàm số và kiểm định đặc trưng mô hình)

Số trang: 52      Loại file: pdf      Dung lượng: 426.84 KB      Lượt xem: 5      Lượt tải: 0    
tailieu_vip

Xem trước 6 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Trong chương 4 và 5 chúng ta đã nghiên cứu sự hồi qui bội trong đó biến phụ thuộc đang quan tâm (Y) quan hệ với nhiều biến độc lập (Xs). Sự lựa chọn các biến độc lập sẽ dựa theo lý thuyết kinh tế, trực giác, kinh nghiệm quá khứ
Nội dung trích xuất từ tài liệu:
Giáo trình kinh tế lượng (Chương 6: Lựa chọn dạng hàm số và kiểm định đặc trưng mô hình) Chöông trình Giaûng daïy Kinh teá Fulbright Phöông phaùp phaân tích Nhaäp moân kinh teá löôïng vôùi caùc öùng duïng Nieân khoùa 2003-2004 Baøi ñoïc Chöông 6: Löïa choïn daïng haøm soá vaø kieåm ñònh ñaëc tröng moâ hình CHÖÔNG 6 Löïa Choïn Daïng Haøm Soá vaø Kieåm Ñònh Ñaëc Tröng Moâ Hình Trong Chöông 4 vaø 5 chuùng ta ñaõ nghieân cöùu söï hoài qui boäi trong ñoù bieán phuï thuoäc ñang quan taâm (Y) quan heä vôùi nhieàu bieán ñoäc laäp (Xs). Söï löïa choïn caùc bieán ñoäc laäp seõ döïa theo lyù thuyeát kinh teá, tröïc giaùc, kinh nghieäm quaù khöù, vaø nhöõng nghieân cöùu khaùc. Ñeå traùnh söï thieân leäch cuûa bieán bò loaïi boû nhö ñaõ thaûo luaän tröôùc ñaây; nhaø nghieân cöùu thöôøng theâm vaøi bieán giaûi thích maø ngôø raèng coù aûnh höôûng ñeán bieán phuï thuoäc. Tuy nhieân; moái quan heä giöõa Y vaø caùc bieán X nghieân cöùu cho ñeán giôø vaãn giaû söû laø tuyeán tính. Ñaây hieån nhieân laø raøng buoäc nghieâm ngaët vaø khoâng thöïc teá treân moät moâ hình. Trong öùng duïng Phaàn 3.11, chuùng ta löu yù raèng bieåu ñoà phaân taùn quan saùt ñöôïc giöõa soá löôïng baûn quyeàn phaùt haønh vaø chi phí nghieân cöùu phaùt trieån (Hình 3.11) cho thaáy moái quan heä theo ñöôøng cong. Ta thaáy raèng giaû thieát tuyeán tính ñaõ cho döï ñoaùn xaáu trong vaøi naêm. Beân caïnh caùc söï vieäc quan saùt thöïc nghieäm cuûa daïng naøy, thöôøng coøn coù nhöõng lyù leõ lyù thuyeát toát cho vieäc xem xeùt caùc daïng haøm toång quaùt cuûa moái quan heä giöõa caùc bieán phuï thuoäc vaø ñoäc laäp. Ví duï, lyù thuyeát kinh teá cho chuùng ta bieát raèng ñöôøng cong chi phí trung bình coù daïng chöõ U, vaø do vaäy giaû thieát tuyeán tính laø ñaùng ngôø neáu ta muoán öôùc löôïng ñöôøng cong chi phí trung bình. Trong chöông naøy, chuùng ta khaûo saùt moät caùch chi tieát ñaùng keå caùc caùch thaønh laäp vaø öôùc löôïng caùc quan heä phi tuyeán. Ñeå coù theå veõ caùc ñoà thò, nhieàu caùch trình baøy chæ giaûi quyeát duy nhaát moät bieán giaûi thích. Ñaây chæ ñôn thuaàn laø moät phöông caùch mang tính sö phaïm. Trong caùc ví duï vaø öùng duïng chuùng ta seõ giaûm nheï raøng buoäc naøy. Chöông naøy cuõng thaûo luaän vaøi phöông phaùp tieán haønh caùc kieåm ñònh ñaëc tröng moâ hình chính thöùc. Ñaëc bieät, caùc phöông phaùp “toång quaùt ñeán ñôn giaûn” vaø “ñôn giaûn ñeán toång quaùt” ñöôïc ñeà caäp trong Chöông 1 seõ ñöôïc thaûo luaän, vaø goïi laø thuû tuïc Ramsey’s RESET (1969).6.1 OÂn Laïi Caùc Haøm Logarit vaø Haøm Muõ Caùc haøm muõ vaø logarit laø hai trong soá caùc haøm ñöôïc duøng phoå bieán nhaát trong laäp moâ hình. Vì lyù do naøy, seõ höõu ích khi oân laïi nhöõng tính chaát cô baûn cuûa caùc haøm naøy tröôùc khi söû duïng chuùng. Haøm Y = aX (a > 0) laø moät ví duï cuûa moät haøm muõ. Trong haøm naøy, a laø cô soá cuûa haøm vaø X laø soá muõ. Trong toaùn hoïc, cô soá thoâng thöôøng nhaát duøng trong moät haøm muõ laø haèng soá toaùn hoïc e ñöôïc xaùc ñònh bôûi Ramu Ramanathan 1 Thuïc Ñoan/Haøo Thi Chöông trình Giaûng daïy Kinh teá Fulbright Phöông phaùp phaân tích Nhaäp moân kinh teá löôïng vôùi caùc öùng duïng Nieân khoùa 2003-2004 Baøi ñoïc Chöông 6: Löïa choïn daïng haøm soá vaø kieåm ñònh ñaëc tröng moâ hình n  1 e = lim1 +  = 2,71828...  n n →∞ X Vaäy haøm muõ chuaån coù daïng Y = e , vaø cuõng ñöôïc vieát döôùi daïng exp(X). Haøm nghòch cuûa haøm muõ goïi laø haøm logarit. Logarit cô soá a cho tröôùc (phaûi laø soá döông) cuûa moät soá ñöôïc ñònh nghóa laø khi luõy thöøa logarit cuûa cô soá seõ cho chính soá ñoù. Ta vieát X = logaY. Ví duï, vì 32 = 25, logarit cô soá 2 cuûa 32 laø 5. Logarit cô soá e ñöôïc goïi logarit töï nhieân vaø kyù hieäu laø Y = lnX, maø khoâng caàn ghi roõ cô soá. Löu yù raèng ln 1 = 0 bôûi vì e0 = 1. Moät soá tính chaát cuûa haøm muõ vaø logarit ñöôïc lieät keâ döôùi ñaây.Tính chaát 6.1 a. Haøm logari ...

Tài liệu được xem nhiều: