Danh mục

Giáo trình KỸ THUẬT ROBOT - Chương 6

Số trang: 26      Loại file: pdf      Dung lượng: 846.51 KB      Lượt xem: 25      Lượt tải: 0    
10.10.2023

Hỗ trợ phí lưu trữ khi tải xuống: 5,000 VND Tải xuống file đầy đủ (26 trang) 0

Báo xấu

Xem trước 3 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

ĐIỀU KHIỂN ROBOT Vấn đề trọng tâm của chúng ta trong lĩnh vực nghiên cứu robot là điều khiển chúng theo các mục tiêu cụ thể. Trong chương này ta cần đưa ra các phương thức điều khiển làm cho tay máy đi theo quỹ đạo yêu cầu được cho trước. Quỹ đạo dự kiến đòi hỏi người lập trình điều khiển phải tìm kiếm đường đi có tính đến những vấn đề liên quan đến môi trường ứng dụng như tránh sự va chạm, các yêu cầu về tốc độ đáp ứng …...
Nội dung trích xuất từ tài liệu:
Giáo trình KỸ THUẬT ROBOT - Chương 6 Chương 6: Điều khiển Robot Chương 6 ĐIỀU KHIỂN ROBOT Vấn đề trọng tâm của chúng ta trong lĩnh vực nghiên cứu robot là điều khiển chúng theo các mục tiêu cụ thể. Trong chương này ta cần đưa ra các phương thức điều khiển làm cho tay máy đi theo quỹ đạo yêu cầu được cho trước. Quỹ đạo dự kiến đòi hỏi người lập trình điều khiển phải tìm kiếm đường đi có tính đến những vấn đề liên quan đến môi trường ứng dụng như tránh sự va chạm, các yêu cầu về tốc độ đáp ứng … Trong các trường hợp ứng dụng, ta không thể điều khiển để tay máy di chuyển được chính xác tuyệt đối theo quỹ đạo dự kiến. Vì vậy cần thực hiện các thao tác sau để tìm quĩ đạo mong muốn trong quá trình điều khiển. Thứ nhất, ta sẽ chỉ ra cách thức biến đổi một quỹ đạo theo mong muốn từ hệ tọa độ Descartes (Cartesian coordinates) qua hệ tọa độ suy rộng (Joint coordinates - hay không gian khớp). Sau đó, đưa ra một bảng những điểm tựa, là những điểm thuộc quỹ đạo dự kiến đã được rời rạc hóa mà ta mong muốn điểm trên khâu tác động cuối sẽ đi qua và từ đó ta chỉ ra cách để xây dựng lại một quỹ đạo liên tục theo yêu cầu. 6.1. Biến đổi quĩ đạo từ hệ toạ độ Descartes sang không gian khớp Trong các ứng dụng của robot, một công việc cụ thể, về mặt lý thuyết ta có thể biểu diễn trong không gian Descartes; và ở đó, dịch chuyển của tay máy được mô tả dễ dàng trong mối quan hệ về vị trí của nó với các phần tử khác trong môi trường hoạt động bên ngoài. Tuy nhiên, việc điều khiển chuyển động của các khâu trên tay máy sao cho điểm làm việc trên khâu tác động cuối di chuyển đúng theo quỹ đạo cho trước lại yêu cầu phải sử dụng không gian khớp vì vậy ta cần sử dụng để giải quyết cả bài toán động lực học. Ở đây ta cũng chú ý một kết quả ở bài toán động học ngược mà ta đã biết ở phần trước, đó là có nhiều lời giải về chuyển động của các khâu thành viên t rong không gian khớp qd(t) để cho điểm trên khâu tác động cuối di chuyển theo quỹ đạo đã cho (bài toán vô định). Vì vậy việc chọn lời giải duy nhất trong số những lời giải có thể có là một vấn đề cần quan tâm. Ngoài ra cách thực hiện dịch chuyển của điểm trên khâu tác động cuối giữa các điểm tựa (nội suy) ảnh hưởng đến khả năng và phương pháp điều khiển. Ở đây, chúng ta có thể thực hiện giải bài toán động học ngược trực tiếp hay theo phương pháp tách nhóm ba khâu. 6.1.1. Nội suy đường đa thức Giả định rằng một quỹ đạo yêu cầu đã được xác định và được thể hiện hoặc 78 Chương 6: Điều khiển Robot trong không gian Descartes hoặc dùng động học ngược, trong không gian khớp. Để thuận tiện, ta dùng biến không gian khớp q(t) cho ký hiệu. Sẽ không thuận tiện cho việc điều khiển khi dữ liệu về quỹ đạo với số lượng vô hạn các điểm được lưu trong bộ nhớ máy tính, cho nên ta thường lưu dưới dạng một số N hữu hạn các điểm tựa và hệ quả là sẽ có những giá trị qi(tk) tương ứng cho mỗi biến khớp i để mô tả những giá trị yêu cầu về vị trí của các khâu tại những điểm thời gian rời rạc tk. Theo cách đó q(tk) là một điểm trong không gian R n mà biến khớp sẽ đi qua tại thời điểm tk. Ta đã gọi chúng là những điểm tựa. Hầu hết các kế hoạch điều khiển robot yêu cầu một quỹ đạo liên tục. Để chuyển thành một bảng các điểm tựa qi(tk) cho quỹ đạo mong muốn qd(t), ta có thể sử dụng các cách thức nội suy tuỳ chọn. Dưới đây trình bày sơ lược về nội suy đa thức. Giả định rằng các điểm tựa là không gian đồng dạng trong thời gian và được xác định trên cơ sở lấy mẫu thời gian như sau: T  t k 1  t k (6.1) Để di chuyển được trơn, trong mỗi khoảng thời gian [tk+1,tk] ta cần đến vị trí mong muốn qd(t) và vận tốc mong muốn qd (t) hợp với bảng điểm tựa. Ta có:  qd i ( tk )  qi ( tk ) qd i ( tk )  qi ( tk )   qd i ( tk 1 )  qi ( tk 1 ) qd i ( tk 1 )  qi ( tk 1 )   (6.2) Để phù hợp với những điều kiện giới hạn, rất cần thiết dùng khoảng [ tk,tk+1] để nội suy đa thức bậc 3: qdi (t )  ai  (t  tk )bi  (t  tk ) 2 ci  (t  tk )3 di (6.3) trong đó có 4 biến tự do. Ơ đó: qdi (t )  bi  2(t  t k )ci  3(t  t k ) 2 d i  (6.4) qdi (t )  2ci  6(t  t k )d i  (6.5) cho nên gia tốc là tuyến tính trong mỗi mẫu thời gian. Ta dễ dàng giải ra được các hệ số và bảo đảm hợp với điều kiện giới hạn. Thực tế ta nhận thấy: 79 Chương 6: Điều khiển Robot 0   ai   qi (t k )  1 0 0 0   bi   qi (t k )  0  10       T 3   ci  qi (t k 1 ) 1 (6.6) T T2       3T 2  d i  qi (t k 1 ) 0 1 2T Ở đây, khi giải ra, ta nhận được các hệ số nội suy cần tính trong mỗi khoảng [tk,tk+1] ai  qi (t k ) ...

Tài liệu được xem nhiều: