Danh mục

Giáo trình xử lý ảnh y tế Tập 1b P14

Số trang: 8      Loại file: pdf      Dung lượng: 200.22 KB      Lượt xem: 15      Lượt tải: 0    
Hoai.2512

Phí tải xuống: 2,000 VND Tải xuống file đầy đủ (8 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Một hệ thống xử lý ảnh cơ bản có thể bao gồm: máy tính cá nhân kèm theo vỉ mạch chuyển đổi đồ hoạ VGA hoặc SVGA, đĩa chứa các ảnh mà bạn dùng để kiểm tra các thuật toán và một màn hình có hỗ trợ VGA hoặc SVGA.
Nội dung trích xuất từ tài liệu:
Giáo trình xử lý ảnh y tế Tập 1b P14 3  f 23 (k )W4nk (6.28) F23 (n)  k 0 và f 22 (k)  f 11 (2k) f 23 (k)  f 11 (2k  1) Biểu thức (6.21), (6.22), (6.25) và (6.26) có thể biểu diễn bằng sơ đồ hình 6.3. Biểu thức (6.23), (6.24), (6.27) và (6.28) có th ể tiếp tục chia nhỏ ra nh ư các bước đã làm ở trên như sau: -4n (6.29) F20 (n)  F30 (n)  W16 F31 (n) -4n (6.30) F20 (n  2)  F30 (n) - W16 F31 (n) -4n (6.31) F21 (n)  F32 (n)  W16 F33 (n) -4n (6.32) F21 (n  2)  F32 (n) - W16 F33 (n) -4n (6.33) F22 (n)  F34 (n)  W16 F35 (n) -4n (6.34) F22 (n  2)  F34 (n) - W16 F35 (n) -4n (6.35) F23 (n)  F36 (n)  W16 F37 (n) -4n (6.36) F23 (n  2)  F36 (n) - W16 F37 (n) ở đây 1 F30 (n)   f 30 ( k )W2 nk (6.37) k 0 3 F31 (n)   f 31 ( k )W2 nk (6.38) k 0 ..., vv. Các biểu thức từ (6.29) đến (6.36) cho kết quả trong bước thứ ba của thuật toán và biểu diễn trong lưu đồ hình 6.4.Mỗi phần tử từ F30(n) đến F37(n) có thể chia tiếp thành hai phần tử nữa và bước này tạo thành sơ đồ cuối cùng (bước đầu tiên) trong lưu đồ. W-2n X(k) X(k) Hệ số xoay n=0 đến 3 0 0 84 1 1 F20(n) 2 2 F10(n) 3 3 0 0 4 2 F21(n) 1 5 4 Hình 6.3 Bước thứ hai sau bước cuối cùng trong thuật toán FFT. X(k) X(k) 0 F30(n) 1 0 0 F31(n) 1 Dãy 0 0 đầu F32(n) 1 vào 0 đã 0 F33(n) được 1 0 sắp 0 F34(n) xếp 1 0 lại 0 F35(n) 1 0 0 F36(n) 1 0 0 F37(n) 1 0 0 85 Hình 6.4 Bước đầu tiên của lưu đồ FFT. Hình 6.5 giới thiệu sơ đồ thuật toán FFT cho N = 16. Chú ý rằng do yêu cầu ban đầu của chương trình mà dãy vào được sắp xếp lại và chứa ở X(k), ví dụ X(k)  x(q) k = 0 đến 15 Bạn sẽ chú ý trên sơ đồ rằng q là giá trị bit của k. Cho N = 24 = 16 chúng ta phải có bốn bước trong lưu đồ. Trong mỗi bước cần phải có tám bướm. Trong mỗi bướm chỉ có một phép nhân phức, hai phép cộng hoặc trừ phức. Tổng số phép nhân phức là 8/2 . 4. Tổng quát cho N = 2r số phép nhân phức là (N/2) . r = (N/2 ) log2 N và số phép cộng là Nlog2N. Chú ý, thực tế số phép nhân sẽ giảm xuống một ít, vì trong bước đầu tiên hệ số xoay W0 = 1 và trong các bước còn lại chúng ta cũng có các bướm với hệ số xoay = 1. Xem xét trường hợp N = 1024 = 210. Số phép nhân cần dùng cho FFT là (N/2).10 = 1024  5 = 5120 so với 1 triệu phép nhân cho tính trực tiếp biến đổi DFT, đây là phương pháp tiết kiệm thực sự cho tính toán. Bây giờ, chúng ta sẽ vạch ra thuật toán FFT. Đó không đơn thuần chỉ là sự phát triển một chương trình từ lưu đồ. Tuy nhiên, chúng ta có thể nghiên ...

Tài liệu được xem nhiều: