Hệ thống kiến thức cơ bản chương Dãy số, Cấp số cộng, cấp số nhân
Số trang: 9
Loại file: pdf
Dung lượng: 620.30 KB
Lượt xem: 12
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Chương 3 : DÃY SỐ . CẤP SỐ CỘNG & CẤP SỐ NHÂN.I.Kiến thức cần nhớ : 1. Phương pháp chứng minh quy nạp:Để chứng minh 1 mệnh đề chứa biến F(n) là một mệnh đề đúng với mọi giá trị nguyên dươn n ≥ p ( p N ٭cho trước ) ta cần thực hiện 2 bước cơ bản :
Nội dung trích xuất từ tài liệu:
Hệ thống kiến thức cơ bản chương Dãy số, Cấp số cộng, cấp số nhân Trường THPT Nguyễn Bỉnh Khiêm Đại số & Giải tích 11. : Tiểu luận HỆ THỐNG KIẾN THỨC CƠ BẢN CHƢƠNGDÃY SỐ . CẤP SỐ CỘNG & CẤP SỐ NHÂN. Nguyễn Công Tuấn . Người thực hiện : Lớp : A6Chương 3 : DÃY SỐ . CẤP SỐ CỘNG & CẤP SỐ NHÂN. I.Kiến thức cần nhớ : 1. Phương pháp chứng minh quy nạp: Để chứng minh 1 mệnh đề chứa biến F(n) là một mệnh đề đúng với mọi giá trị nguyên dươn n ≥ p ( p N ٭cho trước ) ta cần thực hiện 2 bước cơ bản : Bước 1: Chứng minh F(n) là một mệnh đề đúng khi n = p. Bước 2 : Với k là số nguyên dương tuỳ ý , xuất phát từ giả thiết F(n) là mệnh đề đúng với n = k, ta đi chứng minh F(n) đúng đến n = k + 1. VD1: Chứng minh rằng với mọi số nguyên dương n , ta luôn có: 1.2 + 2.5 + … +n(3n – 1 ) = n 2 ( n + 1). (*) Giải : Với n = 1 , ta có : 1(3.1 – 1) = 1 (1 + 1) (*) đúng với n = 1. Giả sử (*) đúng với n = k , k N*, tức là : 1.2 + 2.5 + …+ k(3k- 1) = k 2 ( k + 1), Ta sẽ chứng minh (*) đúng đến n = k + 1, tức là : 1.2 + 2.5 +…+ (k + 1)(3k + 2) = k 1 ( k + 2). 2 Thật vậy , từ giả thiết quy nạp, ta có : 1.2 + 2.5 + …+ k(3k – 1 ) + (k + 1)(3k + 2) = k 2 k 1 + (k + 1)(3k + 2) = (k + 1)( k 2 + 3k +2) = (k + 1)(k + 1)(k + 2) = k 1 (k + 2). ĐPCM . 2 VD2: Chứng minh rằng : u n = 13n 1 chia hết cho 6 n N*.(1) Giải : Khi n = 1, ta có : u n = 13 – 1 = 12 6 1 đúng . Giả sử rằng (1) đúng với n = k ( k N* , k ≥ 1) tức là : 13k 16 Ta chứng minh rằng (1) đúng tới n = k + 1, tức là : 13k 1 16 Thật vậy , ta có : 13k 1 1 = 13k .13 13 12 = 13 13k 1 12 6 ĐPCM. 2. Dãy số : a) Các định nghĩa : Dãy số vô hạn : là một hàm số xác định trên tập hợp các số nguyên dương N*. Dãy số hữu hạn : là một hàm số xác định trên tập hợp m số nguyên dương đầu tiên ( m là số nguyên dương cho trước). Dãy số tăng : u n là dãy số tăng n, u n1 u n > 0. Dãy số giảm : u n là dãy số giảm n, u n1 u n < 0. Dãy số không đổi : u n là dãy số không đổi n, u n1 u n = 0. Dãy số bị chặn trên : u n là dãy số bị chặn trên nếu M: u n M , n N*. Dãy số bị chặn dưới : u n là dãy số bị chặn dưới nếu m: u n m, n N*. Dãy số bị chặn : là dãy số vừa bị chặn trên vừa bị chặn dưới . b) VD: 1) Cho dãy u n với u n = n 1 .Chứng minh u n là dãy số tăng. 3 Ta có : u n1 u n = n 2 n 1 = 3n 2 9n 7 > 0, n N* 3 3 Dãy số tăng. 5n 6 2) Cho dãy số u n với u n = . Chứng minh u n là dãy số giảm. 6n 5 5n 11 5n 6 11 Ta có: u n1 u n = < 0, n N* = 6n 116n 5 6n 11 6n 5 Dãy số giảm. n2 1 3) Chứng minh rằng dãy v n với v n = , là dãy số bị chặn. 2n 2 3 1 2n 2 2 1 51 5 Ta có : v n = 2 2 n 3 = 2 1 2 n 2 3 = 2 2 2 n 2 3 . 2 1 1 . Do đó -2 ≤ v n ≤ 1 ( n 1). Dễ thấy n N* , thì 1 2 2n 3 5 Vì vậy, v n là dãy số bị chặn. 3. ...
Nội dung trích xuất từ tài liệu:
Hệ thống kiến thức cơ bản chương Dãy số, Cấp số cộng, cấp số nhân Trường THPT Nguyễn Bỉnh Khiêm Đại số & Giải tích 11. : Tiểu luận HỆ THỐNG KIẾN THỨC CƠ BẢN CHƢƠNGDÃY SỐ . CẤP SỐ CỘNG & CẤP SỐ NHÂN. Nguyễn Công Tuấn . Người thực hiện : Lớp : A6Chương 3 : DÃY SỐ . CẤP SỐ CỘNG & CẤP SỐ NHÂN. I.Kiến thức cần nhớ : 1. Phương pháp chứng minh quy nạp: Để chứng minh 1 mệnh đề chứa biến F(n) là một mệnh đề đúng với mọi giá trị nguyên dươn n ≥ p ( p N ٭cho trước ) ta cần thực hiện 2 bước cơ bản : Bước 1: Chứng minh F(n) là một mệnh đề đúng khi n = p. Bước 2 : Với k là số nguyên dương tuỳ ý , xuất phát từ giả thiết F(n) là mệnh đề đúng với n = k, ta đi chứng minh F(n) đúng đến n = k + 1. VD1: Chứng minh rằng với mọi số nguyên dương n , ta luôn có: 1.2 + 2.5 + … +n(3n – 1 ) = n 2 ( n + 1). (*) Giải : Với n = 1 , ta có : 1(3.1 – 1) = 1 (1 + 1) (*) đúng với n = 1. Giả sử (*) đúng với n = k , k N*, tức là : 1.2 + 2.5 + …+ k(3k- 1) = k 2 ( k + 1), Ta sẽ chứng minh (*) đúng đến n = k + 1, tức là : 1.2 + 2.5 +…+ (k + 1)(3k + 2) = k 1 ( k + 2). 2 Thật vậy , từ giả thiết quy nạp, ta có : 1.2 + 2.5 + …+ k(3k – 1 ) + (k + 1)(3k + 2) = k 2 k 1 + (k + 1)(3k + 2) = (k + 1)( k 2 + 3k +2) = (k + 1)(k + 1)(k + 2) = k 1 (k + 2). ĐPCM . 2 VD2: Chứng minh rằng : u n = 13n 1 chia hết cho 6 n N*.(1) Giải : Khi n = 1, ta có : u n = 13 – 1 = 12 6 1 đúng . Giả sử rằng (1) đúng với n = k ( k N* , k ≥ 1) tức là : 13k 16 Ta chứng minh rằng (1) đúng tới n = k + 1, tức là : 13k 1 16 Thật vậy , ta có : 13k 1 1 = 13k .13 13 12 = 13 13k 1 12 6 ĐPCM. 2. Dãy số : a) Các định nghĩa : Dãy số vô hạn : là một hàm số xác định trên tập hợp các số nguyên dương N*. Dãy số hữu hạn : là một hàm số xác định trên tập hợp m số nguyên dương đầu tiên ( m là số nguyên dương cho trước). Dãy số tăng : u n là dãy số tăng n, u n1 u n > 0. Dãy số giảm : u n là dãy số giảm n, u n1 u n < 0. Dãy số không đổi : u n là dãy số không đổi n, u n1 u n = 0. Dãy số bị chặn trên : u n là dãy số bị chặn trên nếu M: u n M , n N*. Dãy số bị chặn dưới : u n là dãy số bị chặn dưới nếu m: u n m, n N*. Dãy số bị chặn : là dãy số vừa bị chặn trên vừa bị chặn dưới . b) VD: 1) Cho dãy u n với u n = n 1 .Chứng minh u n là dãy số tăng. 3 Ta có : u n1 u n = n 2 n 1 = 3n 2 9n 7 > 0, n N* 3 3 Dãy số tăng. 5n 6 2) Cho dãy số u n với u n = . Chứng minh u n là dãy số giảm. 6n 5 5n 11 5n 6 11 Ta có: u n1 u n = < 0, n N* = 6n 116n 5 6n 11 6n 5 Dãy số giảm. n2 1 3) Chứng minh rằng dãy v n với v n = , là dãy số bị chặn. 2n 2 3 1 2n 2 2 1 51 5 Ta có : v n = 2 2 n 3 = 2 1 2 n 2 3 = 2 2 2 n 2 3 . 2 1 1 . Do đó -2 ≤ v n ≤ 1 ( n 1). Dễ thấy n N* , thì 1 2 2n 3 5 Vì vậy, v n là dãy số bị chặn. 3. ...
Tìm kiếm theo từ khóa liên quan:
Cơ sở điện học Các thiết bị điện và thiết bị điện tử Các nguồn điện giáo trình điện tử Xung và biến điệnTài liệu liên quan:
-
Cơ Sở Điện Học Truyền Thông - Tín Hiệu Số part 1
9 trang 184 0 0 -
Tìm hiểu về động cơ không đồng bộ phần 1
27 trang 138 0 0 -
Bài giảng điện tử môn hóa học: chuyển đổi giữa khối lượng, thể tích và lượng chất
13 trang 63 0 0 -
Giáo án điện tử công nghệ: công nghệ cắt gọt kim loại
18 trang 50 0 0 -
Hướng dẫn thiết kế mạch và lập trình PLC - Trần Thế San
228 trang 46 0 0 -
Giáo trình Giải tích mạng điện - Lê Kim Hùng
143 trang 45 0 0 -
Bài giảng điện tử công nghệ: cơ cấu phân phối khí
15 trang 40 0 0 -
Giáo trình điện tử căn bản- vuson.tk
23 trang 39 0 0 -
Thực tập điện tử cơ bản part 10
9 trang 38 0 0 -
99 trang 36 0 0