Hệ thức Viet và ứng dụng trong toán
Số trang: 15
Loại file: pdf
Dung lượng: 0.00 B
Lượt xem: 11
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
" Hệ thức Viet và ứng dụng trong toán " mang tính chất tham khảo, giúp ích cho các bạn tự học, ôn thi, với phương pháp giải hay, thú vị, rèn luyện kỹ năng giải đề, nâng cao vốn kiến thức cho các bạn trong các kỳ thi sắp tới. Tác giả hy vọng tài liệu này sẽ giúp ích cho các bạn.
Nội dung trích xuất từ tài liệu:
Hệ thức Viet và ứng dụng trong toán CHUYÊN ð : NG D NG H TH C VIET TRONG GI I TOÁN A. M ð U Trong m t vài năm tr l i ñây thì trong các ñ thi vào l p 10 trung h cph thông , các bài toán v phương trình b c hai có s d ng t i h th c Vi- Etxu t hi n khá ph bi n . Trong khi ñó n i dung và th i lư ng v ph n này trongsách giáo khoa l i r t ít, lư ng bài t p chưa ña d ng . Ta cũng th y ñ gi i ñư c các bài toán có liên qua ñ n h th c Vi – Et,h c sinh c n tích h p nhi u ki n th c v ñ i s , thông qua ñó h c sinh có cáchnhìn t ng quát hơn v hai nghi m c a phương trình b c hai v i các h s . V y nên nhóm toán chúng tôi xây d ng chuyên ñ này ngoài m cñích giúp h c sinh nâng cao ki n th c còn giúp các em làm quen v i m t s d ngtoán có trong ñ thi vào l p 10 trung h c ph thông N i dung chính c a chuyên ñ g m : I. ng d ng 1 Nh m nghi m c a phương trình b c hai m t n II. ng d ng 2 L p phương trình b c hai III. ng d ng 3 Tìm hai s bi t t ng và tích c a chúng IV. ng d ng 4 Tính giá tr c a bi u th c nghi m c a phương trình V. ng d ng 5 Tìm h th c liên h gi a hai nghi m c a phương trình sao cho hai nghi m này không ph thu c vào tham s VI. ng d ng 6 Tìm giá tr tham s c a phương trình th a mãn bi u th c ch a nghi m VII. ng d ng 7 Xác ñ nh d u các nghi m c a phương trình b c hai VIII. ng d ng 8 Tìm giá tr l n nh t, giá tr nh nh t c a bi u th c nghi m http://ebook.here.vn – Thư vi n Sách giáo khoa, Bài gi ng, ð thi mi n phí B. N I DUNG CHUYÊN ð : NG D NG C A H TH C VI-ET TRONG GI I TOÁN Cho phương trình b c hai: ax2 + bx + c = 0 (a≠0) (*) −b − ∆ −b + ∆ x1 = x2 = Có hai nghi m 2a ; 2a −b − ∆ − b + ∆ −2b −b x1 + x2 = = = Suy ra: 2a 2a a (−b − ∆ )(−b + ∆ ) b 2 − ∆ 4ac c x1 x2 = = = 2 = 4a 2 4a 2 4a a −b x1 + x2 = V yñ t: - T ng nghi m là S : S = a c x1 x2 = - Tích nghi m là P : P = a Như v y ta th y gi a hai nghi m c a phương trình (*) có liên quan ch t ch v i các h s a, b, c.ðây chính là n i dung c a ð nh lí VI-ÉT, sau ñây ta tìm hi u m t s ng d ng c a ñ nh lí này tronggi i toán.I. NH M NGHI M C A PHƯƠNG TRÌNH :1. D ng ñ c bi t:Xét phương trình (*) ta th y : a) N u cho x = 1 thì ta có (*) a.12 + b.1 + c = 0 a+b+c=0 c x =1 x2 = Như vây phương trình có m t nghi m 1 và nghi m còn l i là a b) N u cho x = − 1 thì ta có (*) a.( − 1)2 + b( − 1) + c = 0 a − b+c=0 −c x = −1 x2 = Như v y phương trình có m t nghi m là 1 và nghi m còn l i là aVí d : Dùng h th c VI-ÉT ñ nh m nghi m c a các phương trình sau: 1) 2 x + 5 x + 3 = 0 2) 3 x + 8 x − 11 = 0 2 2 (1) (2)Ta th y : −3 x2 = x = −1 Phương trình (1) có d ng a − b + c = 0 nên có nghi m 1 và 2 −11 x2 = x1 = 1 3 Phương trình (2) có d ng a + b + c = 0 nên có nghi m vàBài t p áp d ng: Hãy tìm nhanh nghi m c a các phương trình sau: 1. 35 x − 37 x + 2 = 0 2. 7 x + 500 x − 507 = 0 2 2 ...
Nội dung trích xuất từ tài liệu:
Hệ thức Viet và ứng dụng trong toán CHUYÊN ð : NG D NG H TH C VIET TRONG GI I TOÁN A. M ð U Trong m t vài năm tr l i ñây thì trong các ñ thi vào l p 10 trung h cph thông , các bài toán v phương trình b c hai có s d ng t i h th c Vi- Etxu t hi n khá ph bi n . Trong khi ñó n i dung và th i lư ng v ph n này trongsách giáo khoa l i r t ít, lư ng bài t p chưa ña d ng . Ta cũng th y ñ gi i ñư c các bài toán có liên qua ñ n h th c Vi – Et,h c sinh c n tích h p nhi u ki n th c v ñ i s , thông qua ñó h c sinh có cáchnhìn t ng quát hơn v hai nghi m c a phương trình b c hai v i các h s . V y nên nhóm toán chúng tôi xây d ng chuyên ñ này ngoài m cñích giúp h c sinh nâng cao ki n th c còn giúp các em làm quen v i m t s d ngtoán có trong ñ thi vào l p 10 trung h c ph thông N i dung chính c a chuyên ñ g m : I. ng d ng 1 Nh m nghi m c a phương trình b c hai m t n II. ng d ng 2 L p phương trình b c hai III. ng d ng 3 Tìm hai s bi t t ng và tích c a chúng IV. ng d ng 4 Tính giá tr c a bi u th c nghi m c a phương trình V. ng d ng 5 Tìm h th c liên h gi a hai nghi m c a phương trình sao cho hai nghi m này không ph thu c vào tham s VI. ng d ng 6 Tìm giá tr tham s c a phương trình th a mãn bi u th c ch a nghi m VII. ng d ng 7 Xác ñ nh d u các nghi m c a phương trình b c hai VIII. ng d ng 8 Tìm giá tr l n nh t, giá tr nh nh t c a bi u th c nghi m http://ebook.here.vn – Thư vi n Sách giáo khoa, Bài gi ng, ð thi mi n phí B. N I DUNG CHUYÊN ð : NG D NG C A H TH C VI-ET TRONG GI I TOÁN Cho phương trình b c hai: ax2 + bx + c = 0 (a≠0) (*) −b − ∆ −b + ∆ x1 = x2 = Có hai nghi m 2a ; 2a −b − ∆ − b + ∆ −2b −b x1 + x2 = = = Suy ra: 2a 2a a (−b − ∆ )(−b + ∆ ) b 2 − ∆ 4ac c x1 x2 = = = 2 = 4a 2 4a 2 4a a −b x1 + x2 = V yñ t: - T ng nghi m là S : S = a c x1 x2 = - Tích nghi m là P : P = a Như v y ta th y gi a hai nghi m c a phương trình (*) có liên quan ch t ch v i các h s a, b, c.ðây chính là n i dung c a ð nh lí VI-ÉT, sau ñây ta tìm hi u m t s ng d ng c a ñ nh lí này tronggi i toán.I. NH M NGHI M C A PHƯƠNG TRÌNH :1. D ng ñ c bi t:Xét phương trình (*) ta th y : a) N u cho x = 1 thì ta có (*) a.12 + b.1 + c = 0 a+b+c=0 c x =1 x2 = Như vây phương trình có m t nghi m 1 và nghi m còn l i là a b) N u cho x = − 1 thì ta có (*) a.( − 1)2 + b( − 1) + c = 0 a − b+c=0 −c x = −1 x2 = Như v y phương trình có m t nghi m là 1 và nghi m còn l i là aVí d : Dùng h th c VI-ÉT ñ nh m nghi m c a các phương trình sau: 1) 2 x + 5 x + 3 = 0 2) 3 x + 8 x − 11 = 0 2 2 (1) (2)Ta th y : −3 x2 = x = −1 Phương trình (1) có d ng a − b + c = 0 nên có nghi m 1 và 2 −11 x2 = x1 = 1 3 Phương trình (2) có d ng a + b + c = 0 nên có nghi m vàBài t p áp d ng: Hãy tìm nhanh nghi m c a các phương trình sau: 1. 35 x − 37 x + 2 = 0 2. 7 x + 500 x − 507 = 0 2 2 ...
Tìm kiếm theo từ khóa liên quan:
hệ thức viet ứng dụng viet luyện thi toán toán nâng cao luyện thi đại học toán chuyên ôn thi tốt nghiệpGợi ý tài liệu liên quan:
-
14 trang 121 0 0
-
Bài giảng chuyên đề luyện thi đại học Vật lý – Chương 9 (Chủ đề 1): Đại cương về hạt nhân nguyên tử
0 trang 102 0 0 -
0 trang 86 0 0
-
Bộ 14 đề thi đại học có đáp án 2010
153 trang 53 0 0 -
Môn Toán 10-11-12 và các đề thi trắc nghiệm: Phần 1
107 trang 46 0 0 -
Luyện thi đại học môn Vật lý mã đề 174_01
16 trang 43 0 0 -
Luyện thi đại học môn Vật lý - Mã đề 175_23
14 trang 38 0 0 -
Luyện thi đại học môn Vật lý - Mã đề 175_07
8 trang 38 0 0 -
Luyện thi đại học môn Vật lý mã đề 174_02
10 trang 37 0 0 -
Đề thi thử THPT Quốc gia 2015 lần 1 môn Toán
5 trang 37 0 0