Human gait analysis using hybrid convolutional neural networks
Số trang: 18
Loại file: pdf
Dung lượng: 1.13 MB
Lượt xem: 22
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
This paper analyses the combination of IMU sensors and electromyography sensors (EMG) to improve the identification accuracy of human movements. We propose the hybrid convolutional neural network (CNN) and long short-term memory neuron network (LSTM) for the human gait analysis problem to achieve an accuracy of 0.9418, better than other models including pure CNN models.
Nội dung trích xuất từ tài liệu:
Human gait analysis using hybrid convolutional neural networks
Nội dung trích xuất từ tài liệu:
Human gait analysis using hybrid convolutional neural networks
Tìm kiếm theo từ khóa liên quan:
Computer science and cybernetics Human gait analysis Wearable IoT devices Time-series analysis Deep learningGợi ý tài liệu liên quan:
-
8 trang 199 0 0
-
Application of convolutional neural network for detecting concrete cracks
4 trang 33 0 0 -
28 trang 32 0 0
-
Modern approaches in natural language processing
25 trang 31 0 0 -
11 trang 31 0 0
-
Improving hand posture recognition performance using multi-modalities
10 trang 30 0 0 -
91 trang 29 0 0
-
8 trang 29 0 0
-
Adaptive fast nonsingular terminal sliding mode control for manipulator robot
10 trang 29 0 0 -
Effects of climate variations on hand foot mouth disease in Ho Chi Minh city
8 trang 28 0 0