![Phân tích tư tưởng của nhân dân qua đoạn thơ: Những người vợ nhớ chồng… Những cuộc đời đã hóa sông núi ta trong Đất nước của Nguyễn Khoa Điềm](https://timtailieu.net/upload/document/136415/phan-tich-tu-tuong-cua-nhan-dan-qua-doan-tho-039-039-nhung-nguoi-vo-nho-chong-nhung-cuoc-doi-da-hoa-song-nui-ta-039-039-trong-dat-nuoc-cua-nguyen-khoa-136415.jpg)
Lập luận xác xuất dựa vào các tầng của cơ sở tri thức.
Số trang: 8
Loại file: pdf
Dung lượng: 4.30 MB
Lượt xem: 10
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Lập luận xác xuất dựa vào các tầng của cơ sở tri thức. Nguyên lý vận hành của màng lọc: (1) Nước nguồn ô nhiễm đi vào. (2) Các ion hòa tan. (3a) Áp lực thẩm thấu tự nhiên . (3b) Áp lực đẩy nước qua màng. (4) Màng lọc. (5) Nước có thể uống được. (6) Nước xả
Nội dung trích xuất từ tài liệu:
Lập luận xác xuất dựa vào các tầng của cơ sở tri thức. Tl-p chi Tin h9C va Dieu khi€n h9C, T. 17, S.2 (2001), 27-34 PROBABILISTIC REASONING BASED ON LAYERS OF KNOWLEDGE BASE TRAN DINH QUEAbstract. Reasoning in the interval-valued probabilistic logic depends heavily on the basic matrix of truthvalues of sentences in a knowledge base 8 and a target sentence S. However, the problem of determiningall such consistent truth value assignments for a set of sentences is NP-complete for propositional logic andundecidable for first-order predicate logic. This pap er first presents a method of approximate reasoning in the interval-valued probabilistic logicby basing on byers of a knowledge base. Then, we investigate the method of slightly decreasing thecomplexity of reasoning via the maximum entropy principle in a point-valued probabilistic knowledge base.Such, method is based on the reduced basic matrix constructed from sentences of the knowledge base withoutthe target sentence.Tom tlit. Lap luan trong logic xac sufit gia trj khodng phu thuoc rat nhieu vao ma tr~n CO bin cii a cac giatri chan ly cila cac cfiu trong co so tri thirc 8 va cau dich S. Tuy nhien, bai toan xac dinh tat d. nh imgphep gan gia tr] chin ly phi mfiu thuin cho mot t~p ho-p cau 111. NP-day dtl doi voi logic menh de v a khOngquye t djnh ducc doi voi logic vi t ir cap l. Bai bao nay truoc het trlnh bay mot phtrong ph ap l%p lu an xap xi trong logic xac sufit gia trj khodngbhg each dua vao cac tang cd a CO so tri t h irc , Sau do chiing ta se xem xet met phtrong ph ap lam gidmmi?t chut di? phirc t ap cil a l%p luan dua tren nguy en ly entropy toi dai trong CO so tri thrrc xac suat gia tr]diem. Phirong ph ap l%p luan nhu v~y d ua tren ma tr~n co ban rut go n duC!c xay dung t ir cac cau trong coso tri thuc kh on g bao gem cau dich. 1. INTRODUCTION In various approaches to handling uncertain information, the paradigm of probabilistic logic hasbeen widely studied in the community of AI reseachers (e.g., [1- 13]). The interest in probabilisticlogic as a research topic for AI was sparked by Nilssons paper on probabilistic logic [111. The probabilistic logic, an integration of logic and the probability theory, determines a probabilityof a sentence by means of a probability distribution on a sample space composed of classes of possibleworlds. Each class is defined by means of a tuple of consistent truth values assigned to a set ofsentences. The deduction in this logic is then reduced to the linear programming problem. However,the problem of determining all such consistent truth value assigments for a set of- sentences is NP-complete for propositional logic and undecidable for first-order logic. There have been a great dealof attemps in the AI community to deal with the drawback (e.g., [1], [8] [10] [13]). This paper first proposes a method of approximate reasoning based on layers of an interval-valued probabilistic knowledge base (iKB). The first layer consists of elements of the iKB such thattheir sentences have someJogical relationship with the target sentence. The second one containselements of iKB whose sentences have some relationship with sentences in the first layer and so on,Our inference method is based on the idea that the calculation of a value of a sentence is only baseddirectly on its nearest upper layer. Later we consider the deduction of point-valued probabilistic logicvia Maximum Entropy (ME) principle, Like the deduction from iKB, ME deduction is also based onthe matrix composed of vectors of consistent truth values of the target sentence and sentences in apoint-valued knowledge base (pKB). It is possible to build this deduction based on the reduced basicmatrix of only sentences in some layers of pKB without t-he target sentence, The method of constructing layers from sentences in a knowledge base and a method of approx-28 TRAN DINH QUEimate reasoning based on them will be presented in the next section. Section 3 presents a methodof reducing the size of the basic matrix in the pointed probabilistic reasoning via ME. Our approachis to construct the basic matrix of the sentences in the related layers without referring to the goalsentence. Some conclusions and discussions are presented in Section 4. 2. APPROXIMATE REASONING BASED ...
Nội dung trích xuất từ tài liệu:
Lập luận xác xuất dựa vào các tầng của cơ sở tri thức. Tl-p chi Tin h9C va Dieu khi€n h9C, T. 17, S.2 (2001), 27-34 PROBABILISTIC REASONING BASED ON LAYERS OF KNOWLEDGE BASE TRAN DINH QUEAbstract. Reasoning in the interval-valued probabilistic logic depends heavily on the basic matrix of truthvalues of sentences in a knowledge base 8 and a target sentence S. However, the problem of determiningall such consistent truth value assignments for a set of sentences is NP-complete for propositional logic andundecidable for first-order predicate logic. This pap er first presents a method of approximate reasoning in the interval-valued probabilistic logicby basing on byers of a knowledge base. Then, we investigate the method of slightly decreasing thecomplexity of reasoning via the maximum entropy principle in a point-valued probabilistic knowledge base.Such, method is based on the reduced basic matrix constructed from sentences of the knowledge base withoutthe target sentence.Tom tlit. Lap luan trong logic xac sufit gia trj khodng phu thuoc rat nhieu vao ma tr~n CO bin cii a cac giatri chan ly cila cac cfiu trong co so tri thirc 8 va cau dich S. Tuy nhien, bai toan xac dinh tat d. nh imgphep gan gia tr] chin ly phi mfiu thuin cho mot t~p ho-p cau 111. NP-day dtl doi voi logic menh de v a khOngquye t djnh ducc doi voi logic vi t ir cap l. Bai bao nay truoc het trlnh bay mot phtrong ph ap l%p lu an xap xi trong logic xac sufit gia trj khodngbhg each dua vao cac tang cd a CO so tri t h irc , Sau do chiing ta se xem xet met phtrong ph ap lam gidmmi?t chut di? phirc t ap cil a l%p luan dua tren nguy en ly entropy toi dai trong CO so tri thrrc xac suat gia tr]diem. Phirong ph ap l%p luan nhu v~y d ua tren ma tr~n co ban rut go n duC!c xay dung t ir cac cau trong coso tri thuc kh on g bao gem cau dich. 1. INTRODUCTION In various approaches to handling uncertain information, the paradigm of probabilistic logic hasbeen widely studied in the community of AI reseachers (e.g., [1- 13]). The interest in probabilisticlogic as a research topic for AI was sparked by Nilssons paper on probabilistic logic [111. The probabilistic logic, an integration of logic and the probability theory, determines a probabilityof a sentence by means of a probability distribution on a sample space composed of classes of possibleworlds. Each class is defined by means of a tuple of consistent truth values assigned to a set ofsentences. The deduction in this logic is then reduced to the linear programming problem. However,the problem of determining all such consistent truth value assigments for a set of- sentences is NP-complete for propositional logic and undecidable for first-order logic. There have been a great dealof attemps in the AI community to deal with the drawback (e.g., [1], [8] [10] [13]). This paper first proposes a method of approximate reasoning based on layers of an interval-valued probabilistic knowledge base (iKB). The first layer consists of elements of the iKB such thattheir sentences have someJogical relationship with the target sentence. The second one containselements of iKB whose sentences have some relationship with sentences in the first layer and so on,Our inference method is based on the idea that the calculation of a value of a sentence is only baseddirectly on its nearest upper layer. Later we consider the deduction of point-valued probabilistic logicvia Maximum Entropy (ME) principle, Like the deduction from iKB, ME deduction is also based onthe matrix composed of vectors of consistent truth values of the target sentence and sentences in apoint-valued knowledge base (pKB). It is possible to build this deduction based on the reduced basicmatrix of only sentences in some layers of pKB without t-he target sentence, The method of constructing layers from sentences in a knowledge base and a method of approx-28 TRAN DINH QUEimate reasoning based on them will be presented in the next section. Section 3 presents a methodof reducing the size of the basic matrix in the pointed probabilistic reasoning via ME. Our approachis to construct the basic matrix of the sentences in the related layers without referring to the goalsentence. Some conclusions and discussions are presented in Section 4. 2. APPROXIMATE REASONING BASED ...
Tìm kiếm theo từ khóa liên quan:
toán tử tuyến tính. điều khiển học nghiên cứu tin học Lý thuyết thuật toán tự động học khoa học điều khiểnTài liệu liên quan:
-
Tóm tắt về giảm bậc cho các mô hình: một giải pháp mang tính bình phẩm.
14 trang 470 0 0 -
Nghiên cứu thuật toán lý thuyết: Phần 2
61 trang 144 0 0 -
Nghiên cứu thuật toán lý thuyết: Phần 1
47 trang 121 0 0 -
Nghiên cứu lý thuyết thuật toán: Phần 2
35 trang 39 0 0 -
Nghiên cứu lý thuyết thuật toán: Phần 1
73 trang 38 0 0 -
Thuật toán bầy ong giải bài toán cây khung với chi phí định tuyến nhỏ nhất
12 trang 35 0 0 -
Bài giảng Hệ thống điều khiển thông minh: Chương 5 - TS. Huỳnh Thái Hoàng
61 trang 34 0 0 -
Cực tiểu hóa thời gian trễ trung bình trong một mạng hàng đợi bằng giải thuật di truyền.
6 trang 32 0 0 -
Phân tích tính hội tụ của thuật toán di truyền lai mới
8 trang 32 0 0 -
Mô hình cơ sở dữ liệu hướng đối tượng mờ dựa trên ngữ nghĩa địa số gia tử
13 trang 31 0 0