![Phân tích tư tưởng của nhân dân qua đoạn thơ: Những người vợ nhớ chồng… Những cuộc đời đã hóa sông núi ta trong Đất nước của Nguyễn Khoa Điềm](https://timtailieu.net/upload/document/136415/phan-tich-tu-tuong-cua-nhan-dan-qua-doan-tho-039-039-nhung-nguoi-vo-nho-chong-nhung-cuoc-doi-da-hoa-song-nui-ta-039-039-trong-dat-nuoc-cua-nguyen-khoa-136415.jpg)
Lecture note Data visualization - Chapter 21
Số trang: 21
Loại file: pptx
Dung lượng: 2.17 MB
Lượt xem: 5
Lượt tải: 0
Xem trước 3 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
The main contents of the chapter consist of the following: Script m-file, editor/debugger window, cell mode, using built-in functions, using the HELP feature , window HELP screen, elementary math functions, rounding functions, discrete mathematics, trigonometric function, data analysis function.
Nội dung trích xuất từ tài liệu:
Lecture note Data visualization - Chapter 21Lecture21RecapScriptMfileEditor/DebuggerWindowCellModeChapter3“BuiltinMATLABFunction” UsingBuiltinFunctions UsingtheHELPFeature WindowHELPScreen ElementaryMathFunctions RoundingFunctionsSumsandProductsSortingValuesMatrixSizeVarianceandStandardDeviationNormalDistributionRandomNumbersRandomnumbersareoftenusedinengineering calculationstosimulatemeasureddataMeasureddatararelybehaveexactlyaspredictedby mathematicalmodels,sowecanaddsmallvaluesof randomnumberstoourpredictionstomakeamodel behavemorelikearealsystemRandomnumbersarealsousedtomodelgamesofchanceTwodifferenttypesofrandomnumberscanbegenerated inMATLAB: Uniformrandomnumbers GaussianrandomnumbersUniformRandomNumbersUniformrandomnumbersaregeneratedwiththerand function.Thesenumbersareevenlydistributedbetween0 and1Wecancreateasetofrandomnumbersoverotherranges bymodifyingthenumberscreatedbytherandfunctionForexample: tocreateasetof100evenlydistributednumbers between0and5 firstcreateasetoverthedefaultrangewiththe command r=rand(100,1);ExampleContinued…. Ifwewanttochangetherangeto5to10,wecan add5toeveryvalueinthearray: r=r+5; Theresultwillberandomnumbersvaryingfrom5 to10. Wecangeneralizetheseresultswiththeequation x=(maxmin).random_number_set+minGaussianRandomNumbersContinued….Ifweneedadatasetwithadifferentaverageora differentstandarddeviation,westartwiththedefaultset ofrandomnumbersandthenmodifyitSincethedefaultstandarddeviationis1,wemust multiplybytherequiredstandarddeviationforthenew datasetSincethedefaultmeanis0,we’llneedtoaddthenew mean: x=standard_deviation.random_data_set+meanForexample:tocreateasequenceof500Gaussian randomvariableswithastandarddeviationof2.5andaComplexNumbersMATLABincludesseveralfunctionsusedprimarilywith complexnumbersComplexnumbersconsistoftwoparts arealcomponent animaginarycomponentForexample: 5+3i isacomplexnumber.Thereal componentis5,andtheimaginarycomponentis3.ComplexnumberscanbeenteredintoMATLABintwo ways: Continued….AsisstandardinMATLAB,theinputtothecomplex functioncanbeeithertwoscalarsortwoarraysofvaluesThus,ifxandyaredefinedas x=1:3; y=[1,5,12];thenthecomplexfunctioncanbeusedtodefineanarray ofcomplexnumbersasfollows: complex(x,y)ans=realandimagFunctionTherealandimagfunctionscanbeusedtoseparatethe realandimaginarycomponentsofcomplexnumbersForexample:forA=5+3*i,wehave real(A) ans= 5 imag(A) ans= 3isrealFunctionTheisrealfunctioncanbeusedtodeterminewhethera variableisstoringacomplexnumberItreturnsa1ifthevariableisrealanda0ifitiscomplexSinceAisacomplexnumber,weget isreal(A) ans=0Thus,theisrealfunctionisfalseandreturnsavalueof0ConjugateofComplexNumberThecomplexconjugateofacomplexnumberconsistsof thesamerealcomponent,butanimaginarycomponentof theoppositesignTheconjfunctionreturnsthecomplexconjugate: conj(A) ans=5.00003.0000iThetransposeoperatoralsoreturnsthecomplexconjugate ofanarray,inadditiontoconvertingrowstocolumnsand columnstorowsThus,wehave
Nội dung trích xuất từ tài liệu:
Lecture note Data visualization - Chapter 21Lecture21RecapScriptMfileEditor/DebuggerWindowCellModeChapter3“BuiltinMATLABFunction” UsingBuiltinFunctions UsingtheHELPFeature WindowHELPScreen ElementaryMathFunctions RoundingFunctionsSumsandProductsSortingValuesMatrixSizeVarianceandStandardDeviationNormalDistributionRandomNumbersRandomnumbersareoftenusedinengineering calculationstosimulatemeasureddataMeasureddatararelybehaveexactlyaspredictedby mathematicalmodels,sowecanaddsmallvaluesof randomnumberstoourpredictionstomakeamodel behavemorelikearealsystemRandomnumbersarealsousedtomodelgamesofchanceTwodifferenttypesofrandomnumberscanbegenerated inMATLAB: Uniformrandomnumbers GaussianrandomnumbersUniformRandomNumbersUniformrandomnumbersaregeneratedwiththerand function.Thesenumbersareevenlydistributedbetween0 and1Wecancreateasetofrandomnumbersoverotherranges bymodifyingthenumberscreatedbytherandfunctionForexample: tocreateasetof100evenlydistributednumbers between0and5 firstcreateasetoverthedefaultrangewiththe command r=rand(100,1);ExampleContinued…. Ifwewanttochangetherangeto5to10,wecan add5toeveryvalueinthearray: r=r+5; Theresultwillberandomnumbersvaryingfrom5 to10. Wecangeneralizetheseresultswiththeequation x=(maxmin).random_number_set+minGaussianRandomNumbersContinued….Ifweneedadatasetwithadifferentaverageora differentstandarddeviation,westartwiththedefaultset ofrandomnumbersandthenmodifyitSincethedefaultstandarddeviationis1,wemust multiplybytherequiredstandarddeviationforthenew datasetSincethedefaultmeanis0,we’llneedtoaddthenew mean: x=standard_deviation.random_data_set+meanForexample:tocreateasequenceof500Gaussian randomvariableswithastandarddeviationof2.5andaComplexNumbersMATLABincludesseveralfunctionsusedprimarilywith complexnumbersComplexnumbersconsistoftwoparts arealcomponent animaginarycomponentForexample: 5+3i isacomplexnumber.Thereal componentis5,andtheimaginarycomponentis3.ComplexnumberscanbeenteredintoMATLABintwo ways: Continued….AsisstandardinMATLAB,theinputtothecomplex functioncanbeeithertwoscalarsortwoarraysofvaluesThus,ifxandyaredefinedas x=1:3; y=[1,5,12];thenthecomplexfunctioncanbeusedtodefineanarray ofcomplexnumbersasfollows: complex(x,y)ans=realandimagFunctionTherealandimagfunctionscanbeusedtoseparatethe realandimaginarycomponentsofcomplexnumbersForexample:forA=5+3*i,wehave real(A) ans= 5 imag(A) ans= 3isrealFunctionTheisrealfunctioncanbeusedtodeterminewhethera variableisstoringacomplexnumberItreturnsa1ifthevariableisrealanda0ifitiscomplexSinceAisacomplexnumber,weget isreal(A) ans=0Thus,theisrealfunctionisfalseandreturnsavalueof0ConjugateofComplexNumberThecomplexconjugateofacomplexnumberconsistsof thesamerealcomponent,butanimaginarycomponentof theoppositesignTheconjfunctionreturnsthecomplexconjugate: conj(A) ans=5.00003.0000iThetransposeoperatoralsoreturnsthecomplexconjugate ofanarray,inadditiontoconvertingrowstocolumnsand columnstorowsThus,wehave
Tìm kiếm theo từ khóa liên quan:
Data visualization Lecture note Data visualization Data structures Data Visualization with C Data visualization with matlab Effective graphical displayTài liệu liên quan:
-
Trực quan hóa dữ liệu: Vai trò & thử thách
10 trang 37 0 0 -
Ebook Eloquent JavaScript - A modern introduction to programming: Part 1
199 trang 36 0 0 -
Ebook Management support systems: Part 2 - Dr. Kamlesh Lakhwani
136 trang 32 0 0 -
Lecture Introduction to computing systems (2/e): Chapter 19 - Yale N. Patt, Sanjay J. Patel
28 trang 31 0 0 -
Ebook Introduction to algorithms (3rd edition)
1313 trang 30 0 0 -
Lecture Data Structures: Lesson 38
71 trang 28 0 0 -
Lecture Data structures and algorithms: Chapter 1 - Introduction
41 trang 28 0 0 -
Ebook Introduction to algorithms (Second Edition)
429 trang 27 0 0 -
335 trang 26 0 0
-
Lecture Data Structures: Lesson 32
16 trang 25 0 0