Danh mục

Lựa chọn mô hình hồi quy

Số trang: 4      Loại file: pdf      Dung lượng: 550.35 KB      Lượt xem: 23      Lượt tải: 0    
tailieu_vip

Hỗ trợ phí lưu trữ khi tải xuống: miễn phí Tải xuống file đầy đủ (4 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tính tiết kiệm : mô hình càng đơn giản càng tốt Tính đồng nhất : các tham số ước lượng là duy nhất cho cùng một tập hợp số liệu Tính thích hợp : R2 và R2 hiệu chỉnh càng gần 1 càng tốt Tính bền vững : mô hình phải dựa trên một cơ sở lý thuyết nào đó Có khả năng dự báo tốt : mô hình cho kết quả dự báo sát với thực tế
Nội dung trích xuất từ tài liệu:
Lựa chọn mô hình hồi quy 1/2/2013 1. Các tiêu chuẩn của mô hình Chương 8 Tính tiết kiệm : mô hình càng đơn giản càng tốt Tính đồng nhất : các tham số ước lượng là duy nhất cho cùng một tập hợp số liệu LỰA CHỌN MÔ Tính thích hợp : R2 và R2 hiệu chỉnh càng gần 1 càng tốt HÌNH HỒI QUY Tính bền vững : mô hình phải dựa trên một cơ sở lý thuyết nào đó Có khả năng dự báo tốt : mô hình cho kết quả dự báo sát với thực tế2. Cách tiếp cận để lựa chọn mô hình 2. Cách tiếp cận để lựa chọn mô hình a.Xác định số biến độc lập b.Kiểm tra mô hình có vi phạm giả thiết hay không Có hai hướng tiếp cận Từ đơn giản đến tổng quát : Bổ sung biến độc lập Kiểm tra các “bệnh của mô hình ” từ từ vào mô hình Đa cộng tuyến Từ tổng quát đến đơn giản : Đầu tiên, xét mô hình đầy đủ các biến độc lập đã được xác định . Sau đó Tự tương quan tiến hành loại trừ những biến không quan trọng ra khỏi mô hình Phương sai thay đổi2. Cách tiếp cận để lựa chọn mô hình 2. Cách tiếp cận để lựa chọn mô hình c. Chọn dạng hàm d.Một số tiêu chuẩn khácCần dựa vào Giá trị của hàm hợp lý log-likelihood(L) Các lý thuyết kinh tế n n 1 Các kết quả thực nghiệm L   ln  2  ln( 2 )  U i2 2 2 2 Đồ thị biểu diễn Giá trị của L càng lớn chứng tỏ mô hình càng phù hợp 1 1/2/20132. Cách tiếp cận để lựa chọn mô hình 2. Cách tiếp cận để lựa chọn mô hình d.Một số tiêu chuẩn khác d.Một số tiêu chuẩn khácTiêu chuẩn AIC (Akaike info criterion) Tiêu chuẩn Schwarz (Schwarz criterion) RSS 2 k n RSS 2 k n AIC  e SC  n n n Giá trị của SC càng nhỏ chứng tỏ mô hình càng Giá trị của AIC càng nhỏ chứng tỏ mô hình càng phù hợp phù hợp2. Cách tiếp cận để lựa chọn mô hình Kết quả hồi quy bằng Eviews như sau : d.Một số tiêu chuẩn khácNếu chú ý đến độ phức tạp của mô hình thì thường chú ýđến tiêu chuẩn SCNếu xét số liệu theo thời gian thì thường dùng tiêu chuẩnAIC Lưu ý là biến phụ thuộc xuất hiện trong mô hình phải cùng dạng3. Các sai lầm thường gặp khi chọn mô hình 3. Các sai lầm thường gặp khi chọn mô hình a. Bỏ sót biến thích hợp b. Thừa biến Giả sử mô hình đúng là : Giả sử mô hình đúng là : Yi = 1 + 2X2i+ 3X3i + Ui (a) Yi = 1 + 2X2i + Ui (a) Nhưng ta lại chọn mô hình : Nhưng ta lại chọn mô hình (có thêm X3): Yi = 1 + 2X2i + Vi ( b) Yi = 1 + 2X2i + 2X3i + Vi (b)  hậu quả :  hậu quả : 2 1/2/20134. Phá ...

Tài liệu được xem nhiều: