Danh mục

Luận văn đề tài : Nhóm Lie phương trình vi phân

Số trang: 55      Loại file: pdf      Dung lượng: 547.72 KB      Lượt xem: 23      Lượt tải: 0    
Jamona

Xem trước 6 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Trong toán học, một nhóm Lie, được đặt tên theo nhà toán học người Na Uy là Sophus Lie, là một nhóm cũng là một đa tạp trơn (differentiable manifold), với tính chất là các toán tử nhóm tương thích với cấu trúc trơn. Nhóm Lie đại diện cho lý thuyết phát triển của các đối xứng liên tục của các cấu trúc toán học.
Nội dung trích xuất từ tài liệu:
Luận văn đề tài : Nhóm Lie phương trình vi phân Luận văn Nhóm Lie phương trình vi phân www.VNMATH.com Môc lôc Môc lôc 1 Lêi c¶m ¬n 3 Lêi më ®Çu 4 1 KiÕn thøc chuÈn bÞ 6 1.1 Nhãm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Nhãm Lie c¸c phÐp biÕn ®æi mét tham sè . . . . . . . . . . 9 1.2.1 Nhãm c¸c phÐp biÕn ®æi . . . . . . . . . . . . . . . . 9 1.2.2 Nhãm Lie c¸c phÐp biÕn ®æi mét tham sè . . . . . . 10 1.2.3 BiÕn ®æi vi ph©n . . . . . . . . . . . . . . . . . . . . 15 1.2.4 §Þnh lý Lie c¬ b¶n thø nhÊt . . . . . . . . . . . . . . 15 1.2.5 To¸n tö sinh vi ph©n . . . . . . . . . . . . . . . . . . 19 1.2.6 Hµm bÊt biÕn . . . . . . . . . . . . . . . . . . . . . . 23 1.3 Nhãm Lie c¸c phÐp biÕn ®æi hai tham sè . . . . . . . . . . . 24 1.3.1 §Þnh nghÜa . . . . . . . . . . . . . . . . . . . . . . . . 24 1.3.2 To¸n tö sinh vi ph©n . . . . . . . . . . . . . . . . . . 27 1.3.3 §¹i sè Lie . . . . . . . . . . . . . . . . . . . . . . . . 32 1.3.4 §¹i sè Lie gi¶i ®-îc . . . . . . . . . . . . . . . . . . 35 1 www.VNMATH.com Môc lôc 2 øng dông tÝnh ®èi xøng vµo viÖc gi¶i ph-¬ng tr×nh vi ph©n 2 37 2.1 øng dông nhãm Lie mét tham sè vµo gi¶i ph-¬ng tr×nh vi ph©n cÊp I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.1.1 HÖ to¹ ®é chÝnh t¾c . . . . . . . . . . . . . . . . . . . 37 2.1.2 øng dông nhãm Lie c¸c phÐp biÕn ®æi mét tham sè vµo gi¶i ph-¬ng tr×nh vi ph©n cÊp I . . . . . . . . . . 40 2.2 øng dông §¹i sè Lie ®Ó gi¶i ph-¬ng tr×nh vi ph©n cÊp cao . 43 2.2.1 Nhãm Lie c¸c phÐp biÕn ®æi mét tham sè ®éc lËp, mét tham sè phô thuéc . . . . . . . . . . . . . . . . . 43 2.2.2 VÝ dô øng dông §¹i sè Lie vµo gi¶i ph-¬ng tr×nh vi ph©n bËc cao . . . . . . . . . . . . . . . . . . . . . . . 49 KÕt luËn 53 Tµi liÖu tham kh¶o 54 2 www.VNMATH.com Lêi c¶m ¬n 3 Lêi c¶m ¬n Trong suèt thêi gian lµm khãa luËn, t«i ®· nhËn ®-îc sù h-íng dÉn rÊt tËn t×nh, chu ®¸o cña TS §Æng Anh TuÊn. MÆc dï ë xa nh-ng ThÇy vÉn th-êng xuyªn h-íng dÉn, ®éng viªn t«i cè g¾ng hoµn thiÖn ®-îc kho¸ luËn nµy. T«i xin ®-îc bµy tá lßng kÝnh träng vµ biÕt ¬n s©u s¾c nhÊt tíi ThÇy. T«i xin göi lêi c¶m ¬n ch©n thµnh tíi PGS.TS §Æng §×nh Ch©u, ThÇy ®· cho t«i nh÷ng lêi khuyªn quý b¸u kh«ng chØ vÒ c¸c vÊn ®Ò xoay quanh khãa luËn mµ cßn vÒ ph-¬ng ph¸p häc tËp vµ nghiªn cøu, t«i rÊt tr©n träng nh÷ng gãp ý cña ThÇy, ®ã còng lµ ®éng lùc ®Ó t«i hoµn thµnh khãa luËn nµy. T«i còng xin c¶m ¬n ThS Ninh V¨n Thu ®· gi¶i ®¸p th¾c m¾c, ®ãng gãp nh÷ng ý kiÕn gióp t«i hoµn thµnh kho¸ luËn nµy; ®ång thêi t«i xin ®-îc göi lêi c¶m ¬n tíi c¸c ThÇy, C« trong Bé m«n Gi¶i tÝch; c¸c ThÇy, C« trong Khoa To¸n - C¬ - Tin häc - tr-êng §H Khoa Häc Tù Nhiªn - §HQGHN ®· gi¶ng d¹y, d×u d¾t t«i trong suèt 4 n¨m qua. Khãa luËn còng ®-îc hoµn thµnh víi sù ®éng viªn tinh thÇn cña gia ®×nh vµ b¹n bÌ. T«i xin göi lêi c¶m ¬n ch©n thµnh vµ s©u s¾c nhÊt vÒ tÊt c¶ sù gióp ®ì quý b¸u ®ã! Hµ Néi, ngµy 21 th¸ng 5 n¨m 2009 Sinh viªn: NguyÔn ThÞ Hång Xu©n 3 www.VNMATH.com Lêi më ®Çu 4 Lêi më ®Çu Trong to¸n häc, mét nhãm Lie, ®-îc ®Æt tªn theo nhµ to¸n häc ng-êi Na Uy lµ Sophus Lie, lµ mét nhãm còng lµ mét ®a t¹p tr¬n (differentiable manifold), víi tÝnh chÊt lµ c¸c to¸n tö nhãm t-¬ng thÝch víi cÊu tróc tr¬n. Nhãm Lie ®¹i diÖn cho lý thuyÕt ph¸t triÓn cña c¸c ®èi xøng liªn tôc cña c¸c cÊu tróc to¸n häc. §iÒu nµy ®· lµm nhãm Lie lµ c«ng cô cho gÇn nh- tÊt c¶ c¸c ngµnh to¸n hiÖn ®¹i, vµ vËt lý lý thuyÕt hiÖn ®¹i, ®Æc biÖt lµ trong vËt lý h¹t. Bëi v× c¸c nhãm Lie lµ c¸c ®a t¹p, chóng cã thÓ ®-îc nghiªn cøu sö dông gi¶i tÝch vi ph©n (differential calculus), t-¬ng ph¶n víi tr-êng hîp c¸c nhãm t«p« tæng qu¸t h¬n. Mét trong nh÷ng ý t-ëng chÝnh trong lý thuyÕt vÒ nhãm Lie, ®Ò ra bëi Sophus Lie lµ thay thÕ cÊu tróc toµn côc, nhãm, víi phiªn b¶n mang tÝnh ®Þa ph-¬ng cña nã hay cßn gäi lµ phiªn b¶n ®· ®-îc lµm tuyÕn tÝnh ho¸, mµ Lie gäi lµ mét nhãm cùc nhá mµ b©y giê ®-îc biÕt ®Õn nh- lµ ®¹i sè Lie. Nhãm Lie ®· cung cÊp mét ph-¬ng tiÖn tù nhiªn ®Ó ph©n tÝch c¸c ®èi xøng liªn tôc cña c¸c ph-¬ng tr×nh vi ph©n (lý thuyÕt Picard-Vessiot), trong mét c¸ch thøc nh- c¸c nhãm ho¸n vÞ (permutation group) ®-îc sö dông trong lý thuyÕt Galois ®Ó ph©n tÝch c¸c ®èi xøng rêi r¹c cña c¸c ph-¬ng tr×nh ®¹i sè. Trong bµi kho¸ luËn nµy, t¸c gi¶ xin tr×nh bµy mét sè nghiªn cøu c¬ b¶n vÒ nhãm Lie mét tham sè, nhãm Lie 2 tham sè vµ c¸c øng dông cña chóng trong viÖc gi¶i ph-¬ng tr×nh vi ph©n. C¸c bµi to¸n vµ vÝ dô ®-îc tr×nh bµy trong khãa luËn ®-îc trÝch dÉn tõ cuèn Symmetry anh Integration 4 www.VNMATH.com Lêi më ®Çu ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: