Luận văn Thạc sĩ Khoa học: Tính toán, phân tích, mô phỏng động học và động lực học Robot ShrimpIII
Số trang: 71
Loại file: pdf
Dung lượng: 12.23 MB
Lượt xem: 10
Lượt tải: 0
Xem trước 8 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Đề tài "Tính toán, phân tích, mô phỏng động học và động lực học Robot ShrimpIII" có cấu trúc gồm 3 chương trình bày tổng quan về rôbot tự hành, tính toán động học Robot ShrimpIII, mô phỏng động học và động lực học robot tự hành ShrimpIII. Mời các bạn cùng tham khảo nội dung chi tiết.
Nội dung trích xuất từ tài liệu:
Luận văn Thạc sĩ Khoa học: Tính toán, phân tích, mô phỏng động học và động lực học Robot ShrimpIII BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI --------------------------------------- Họ và tên tác giả luận văn NGUYỄN VĂN DƯƠNG TÊN ĐỀ TÀI LUẬN VĂN TÍNH TOÁN, PHÂN TÍCH, MÔ PHỎNG ĐỘNG HỌC VÀ ĐỘNG LỰC HỌC ROBOT SHRIMPIII Chuyên ngành : Công Nghệ Chế Tạo Máy LUẬN VĂN THẠC SĨ KHOA HỌC CÔNG NGHỆ CHẾ TẠO MÁY NGƯỜI HƯỚNG DẪN KHOA HỌC TS. NGUYỄN TRỌNG DOANH Hà Nội – Năm 2011 Luận văn tốt nghiệp GVHD: TS.Nguyễn Trọng Doanh LỜI CAM ĐOAN Tôi xin cam oan ni dung trong lun vn là do tôi t nghiên cu, tìm hiu. Nhng tài liu c trích dn trong lun vn u có ghi chú rõ ngun gc, tác gi. Nguyn Vn Dng Học viên: Nguyễn Văn Dương Trang 1 Luận văn tốt nghiệp GVHD: TS.Nguyễn Trọng Doanh DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ Hình 1.1: Robot tự hành SmatROD Hình 1.3: Robot thám hiểm của trung tâm vũ trụ NASA Hình 1.4: Robot tự hành 8 bánh Lunokhod. Hình 1.5: Robot Lauron II từ đại học Karlsruhe Hình 1.6: Caterpillar robot ROBHAZ_DT3 Hình 1.7: Robot tự hành ShrimpIII của công ty Bluebotics Hình 1.8: Robot người P2 của hãng Honda (Nhật Bản) Hình 1.9: Robot Dog Aibo của hãng Sony (Nhật Bản) Hình 1.10: Phương pháp cân bằng trọng tâm robot bằng dịch đối trọng theo đường thẳng Hình 1.11: Phương pháp thay đổi trọng tâm bằng hệ thống thanh nhún song song Hình 1.12: Phương pháp điều khiển 3 bánh Hình 1.13: Phương pháp điều khiển cả ba bánh cả dẫn động và tác dụng lái Hình 1.14: Khung có 2 bánh rẽ phía trước. 2 bánh sau chủ động và được kết nối qua khớp giúp robot luôn ở trạng thái cân bằng Hình 1.15: Khâu cơ sở liên kết với các khâu động giúp cơ cấu trở nên linh hoạt khi di chuyển Hinh 1.16: Hai phần được kết nối qua khớp trụ đứng giúp robot rẽ dễ dàng Hình 1.17: Kết cấu 5 bánh với 4 bánh dẫn động và 1 bánh lái Hình 1.18: Kết cấu robot tự hành 6 bánh 2 hàng song song linh hoạt Hình 1.19: Kết cấu 6 bánh với 2 bánh rẽ phía trước Hình 1.20: Kết cấu 6 bánh với độ linh hoạt đặc biệt Hình 1.21: Kết cấu 6 bánh đặc biệt nhất ( cả 6 bánh đều dẫn động và bánh trước và bánh sau là 2 bánh điều khiển rẽ và quay vòng. Hình 1.22: Kết cấu robot 8 bánh linh hoạt Hình 1.23: Kết cấu 8 bánh với bộ đôi giá chuyển hướng Hình 1.24: Kết cấu 8 bánh với 2 phần liên kết bằng khớp trụ Hình 1.25: Kết cấu 8 bánh, hai phần liên kết bằng khớp cầu Học viên: Nguyễn Văn Dương Trang 2 Luận văn tốt nghiệp GVHD: TS.Nguyễn Trọng Doanh Hình 2.1: Các hệ tọa độ của robot Hình 2.2: Sự dịch chuyển của B tại vị trí t và t+1 Hình 2.3: Sự dịch chuyển của giá chuyển hướng. Hình 2.4: 3D-Odometry và các biến Hình 2.5: Quỹ đạo của tâm trọng lực khi leo cầu thang 17cm. Hình 3.1: Phân bố nội lực và ngoại lực tác dụng lên trục mỗi đông cơ dẫn động bánh Hình 3.2: Cơ cấu hình bình hành kết nối bộ bánh bên thân robot ShrimpIII Hình 3.3: Đặc tính cơ học ( khớp thấp) của cơ cấu Hình 3.4: Kh năng linh hoạt vượt địa hình của cặp bánh bên thân robot ShrimpIII Hình 3.5: So sánh tâm quay giữa 2 cơ cấu Hình 3.6: Kết cấu chân trước robot ShrimpIII Hình 3.7: Nguyên lý dịch chuyển của chân trước robot ShirmpIII Hình 3.8: Thông số kỹ thuật của chân trước robot ShrimpIII Hình 3.9: Chân trước với các thông số kích thước chiều dài. Hình 3.10: Biểu đồ mô phỏng quỹ đạo chuyển động của tâm bánh trước Tb(x,y) khi thay đổi thông số chiều dài khâu e và khâu d Hình 3.11: Kết cấu chân sau (chân cố định với thân robot) Hình 3.12: Sơ đồ tính độ nâng lên của bánh trước khi leo qua vật cản Hình 3.13: Kết cấu hình bình hành ở trạng thái tĩnh trên nền phẳng Hình 3.14: Kết cấu chân (hbh) ở trạng thái vượt vật cản. Hình 3.15: Robot ShrimpIII di chuyển trên nền phẳng Hình 3.16: Quy đổi lực tác dụng về tính trên mỗi hệ động cơ – bánh dẫn. Hình 3.17: Đáp ứng tốc độ quay (n), dòng phần ứng (iu) khi có bước nhảy điện áp (uu) Hình 3.18: Bánh chân trước ShrimpIII tiếp xúc và leo hết bậc cầu thang Hình 3.19: Bánh chân trước nằm vượt qua bậc thang thứ 1 Hình 3.20: Bánh 21 và 22 vượt mặt đứng bậc thang Hình 3.21: Trạng thái 3 bánh trước vượt hết bậc trongkhi 3 bánh sau chưa vượt Học viên: Nguyễn Văn Dương Trang 3 Luận văn tốt nghiệp GVHD: TS.Nguyễn Trọng Doanh Hình 3.22: Trạng thái cặp bánh 31 và 32 vượt bậc thang Hình 3.23: Trạng thái bánh cuối (bánh 4) vượt thành đứng bậc thang Hình 3.24: Robot ShrimpIII vượt vật cản lệch (1 cặp bánh bên thân vượt vật cản) Hình 3.25: Trạng thái khi quay vòng hoặc chuyển hướng của robot ShrimpIII Hình 3.26: Trạng thái robot ShrimpIII xuỗng bậc cao thang Hình 3.27: Robot ShrimpIII dừng hoạt động khi vật cản chạm động cơ Hình 3.28: Mô hình động học robot ShrimpIII di chuyển từ điểm P tới điểm G Hình 3.29: Bản vẽ Thông số kích thước chân trước ShrimpIII Hình 3.30: Toàn bộ phần chân trước ShrimpIII mô phỏng theo chế tạo Hình 3.31: Động cơ lái bánh trước và bánh sau Hình 3.32: Biện pháp kỹ thuật lắp ghép động cơ với càng lái và bánh dẫn Hình 3.33: Phương pháp kẹp chặt trục động cơ và càng lái Hình 3.34: Bản vẽ kích thước thiết kế và chế tạo chân sau ShrimpIII Hình 3.35: Hình ảnh mô phỏng chân sau robot ShrimpIII Hình 3.36: Bản vẽ kích thước toàn bộ kết cấu hình bình hành (chân bên) Hình 3.37: Kết cấu bánh với các khâu liên kết kiểu hình bình hành Hình 3.38: Bản vẽ kích thước phần thân robot ShrimpIII Hình 3.39: Phần thân Robot ShrimpIII đã gắn ắc quy và camera quan sát Hình 3.40: Toàn cảnh robot ShrimpIII. Học viên: Nguyễn Văn Dương Trang 4 ...
Nội dung trích xuất từ tài liệu:
Luận văn Thạc sĩ Khoa học: Tính toán, phân tích, mô phỏng động học và động lực học Robot ShrimpIII BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI --------------------------------------- Họ và tên tác giả luận văn NGUYỄN VĂN DƯƠNG TÊN ĐỀ TÀI LUẬN VĂN TÍNH TOÁN, PHÂN TÍCH, MÔ PHỎNG ĐỘNG HỌC VÀ ĐỘNG LỰC HỌC ROBOT SHRIMPIII Chuyên ngành : Công Nghệ Chế Tạo Máy LUẬN VĂN THẠC SĨ KHOA HỌC CÔNG NGHỆ CHẾ TẠO MÁY NGƯỜI HƯỚNG DẪN KHOA HỌC TS. NGUYỄN TRỌNG DOANH Hà Nội – Năm 2011 Luận văn tốt nghiệp GVHD: TS.Nguyễn Trọng Doanh LỜI CAM ĐOAN Tôi xin cam oan ni dung trong lun vn là do tôi t nghiên cu, tìm hiu. Nhng tài liu c trích dn trong lun vn u có ghi chú rõ ngun gc, tác gi. Nguyn Vn Dng Học viên: Nguyễn Văn Dương Trang 1 Luận văn tốt nghiệp GVHD: TS.Nguyễn Trọng Doanh DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ Hình 1.1: Robot tự hành SmatROD Hình 1.3: Robot thám hiểm của trung tâm vũ trụ NASA Hình 1.4: Robot tự hành 8 bánh Lunokhod. Hình 1.5: Robot Lauron II từ đại học Karlsruhe Hình 1.6: Caterpillar robot ROBHAZ_DT3 Hình 1.7: Robot tự hành ShrimpIII của công ty Bluebotics Hình 1.8: Robot người P2 của hãng Honda (Nhật Bản) Hình 1.9: Robot Dog Aibo của hãng Sony (Nhật Bản) Hình 1.10: Phương pháp cân bằng trọng tâm robot bằng dịch đối trọng theo đường thẳng Hình 1.11: Phương pháp thay đổi trọng tâm bằng hệ thống thanh nhún song song Hình 1.12: Phương pháp điều khiển 3 bánh Hình 1.13: Phương pháp điều khiển cả ba bánh cả dẫn động và tác dụng lái Hình 1.14: Khung có 2 bánh rẽ phía trước. 2 bánh sau chủ động và được kết nối qua khớp giúp robot luôn ở trạng thái cân bằng Hình 1.15: Khâu cơ sở liên kết với các khâu động giúp cơ cấu trở nên linh hoạt khi di chuyển Hinh 1.16: Hai phần được kết nối qua khớp trụ đứng giúp robot rẽ dễ dàng Hình 1.17: Kết cấu 5 bánh với 4 bánh dẫn động và 1 bánh lái Hình 1.18: Kết cấu robot tự hành 6 bánh 2 hàng song song linh hoạt Hình 1.19: Kết cấu 6 bánh với 2 bánh rẽ phía trước Hình 1.20: Kết cấu 6 bánh với độ linh hoạt đặc biệt Hình 1.21: Kết cấu 6 bánh đặc biệt nhất ( cả 6 bánh đều dẫn động và bánh trước và bánh sau là 2 bánh điều khiển rẽ và quay vòng. Hình 1.22: Kết cấu robot 8 bánh linh hoạt Hình 1.23: Kết cấu 8 bánh với bộ đôi giá chuyển hướng Hình 1.24: Kết cấu 8 bánh với 2 phần liên kết bằng khớp trụ Hình 1.25: Kết cấu 8 bánh, hai phần liên kết bằng khớp cầu Học viên: Nguyễn Văn Dương Trang 2 Luận văn tốt nghiệp GVHD: TS.Nguyễn Trọng Doanh Hình 2.1: Các hệ tọa độ của robot Hình 2.2: Sự dịch chuyển của B tại vị trí t và t+1 Hình 2.3: Sự dịch chuyển của giá chuyển hướng. Hình 2.4: 3D-Odometry và các biến Hình 2.5: Quỹ đạo của tâm trọng lực khi leo cầu thang 17cm. Hình 3.1: Phân bố nội lực và ngoại lực tác dụng lên trục mỗi đông cơ dẫn động bánh Hình 3.2: Cơ cấu hình bình hành kết nối bộ bánh bên thân robot ShrimpIII Hình 3.3: Đặc tính cơ học ( khớp thấp) của cơ cấu Hình 3.4: Kh năng linh hoạt vượt địa hình của cặp bánh bên thân robot ShrimpIII Hình 3.5: So sánh tâm quay giữa 2 cơ cấu Hình 3.6: Kết cấu chân trước robot ShrimpIII Hình 3.7: Nguyên lý dịch chuyển của chân trước robot ShirmpIII Hình 3.8: Thông số kỹ thuật của chân trước robot ShrimpIII Hình 3.9: Chân trước với các thông số kích thước chiều dài. Hình 3.10: Biểu đồ mô phỏng quỹ đạo chuyển động của tâm bánh trước Tb(x,y) khi thay đổi thông số chiều dài khâu e và khâu d Hình 3.11: Kết cấu chân sau (chân cố định với thân robot) Hình 3.12: Sơ đồ tính độ nâng lên của bánh trước khi leo qua vật cản Hình 3.13: Kết cấu hình bình hành ở trạng thái tĩnh trên nền phẳng Hình 3.14: Kết cấu chân (hbh) ở trạng thái vượt vật cản. Hình 3.15: Robot ShrimpIII di chuyển trên nền phẳng Hình 3.16: Quy đổi lực tác dụng về tính trên mỗi hệ động cơ – bánh dẫn. Hình 3.17: Đáp ứng tốc độ quay (n), dòng phần ứng (iu) khi có bước nhảy điện áp (uu) Hình 3.18: Bánh chân trước ShrimpIII tiếp xúc và leo hết bậc cầu thang Hình 3.19: Bánh chân trước nằm vượt qua bậc thang thứ 1 Hình 3.20: Bánh 21 và 22 vượt mặt đứng bậc thang Hình 3.21: Trạng thái 3 bánh trước vượt hết bậc trongkhi 3 bánh sau chưa vượt Học viên: Nguyễn Văn Dương Trang 3 Luận văn tốt nghiệp GVHD: TS.Nguyễn Trọng Doanh Hình 3.22: Trạng thái cặp bánh 31 và 32 vượt bậc thang Hình 3.23: Trạng thái bánh cuối (bánh 4) vượt thành đứng bậc thang Hình 3.24: Robot ShrimpIII vượt vật cản lệch (1 cặp bánh bên thân vượt vật cản) Hình 3.25: Trạng thái khi quay vòng hoặc chuyển hướng của robot ShrimpIII Hình 3.26: Trạng thái robot ShrimpIII xuỗng bậc cao thang Hình 3.27: Robot ShrimpIII dừng hoạt động khi vật cản chạm động cơ Hình 3.28: Mô hình động học robot ShrimpIII di chuyển từ điểm P tới điểm G Hình 3.29: Bản vẽ Thông số kích thước chân trước ShrimpIII Hình 3.30: Toàn bộ phần chân trước ShrimpIII mô phỏng theo chế tạo Hình 3.31: Động cơ lái bánh trước và bánh sau Hình 3.32: Biện pháp kỹ thuật lắp ghép động cơ với càng lái và bánh dẫn Hình 3.33: Phương pháp kẹp chặt trục động cơ và càng lái Hình 3.34: Bản vẽ kích thước thiết kế và chế tạo chân sau ShrimpIII Hình 3.35: Hình ảnh mô phỏng chân sau robot ShrimpIII Hình 3.36: Bản vẽ kích thước toàn bộ kết cấu hình bình hành (chân bên) Hình 3.37: Kết cấu bánh với các khâu liên kết kiểu hình bình hành Hình 3.38: Bản vẽ kích thước phần thân robot ShrimpIII Hình 3.39: Phần thân Robot ShrimpIII đã gắn ắc quy và camera quan sát Hình 3.40: Toàn cảnh robot ShrimpIII. Học viên: Nguyễn Văn Dương Trang 4 ...
Tìm kiếm theo từ khóa liên quan:
Luận văn Thạc sĩ Luận văn Thạc sĩ Khoa học Công nghệ chế tạo máy Robot tự hành Mô phỏng động học Động lực học Robot ShrimpIIIGợi ý tài liệu liên quan:
-
Luận văn Thạc sĩ Kinh tế: Quản trị chất lượng dịch vụ khách sạn Mường Thanh Xa La
136 trang 358 5 0 -
97 trang 310 0 0
-
Luận văn Thạc sĩ Khoa học máy tính: Tìm hiểu xây dựng thuật toán giấu tin mật và ứng dụng
76 trang 297 0 0 -
97 trang 273 0 0
-
26 trang 266 0 0
-
115 trang 258 0 0
-
155 trang 253 0 0
-
64 trang 244 0 0
-
26 trang 240 0 0
-
70 trang 221 0 0