Danh mục

Luận văn Thạc sĩ Toán học: Bất đẳng thức dạng hermite–hadamard–fejér cho hàm p lồi

Số trang: 43      Loại file: pdf      Dung lượng: 327.62 KB      Lượt xem: 6      Lượt tải: 0    
tailieu_vip

Xem trước 5 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Luận văn xây dựng các bất đẳng thức mới dạng Hermite–Hadamard–Féjer cho một số lớp hàm lồi khác nhau và đưa ra các ứng dụng đánh giá một số giá trị trung bình đặc biệt từ các bất đẳng thức này. Mục tiêu của đề tài luận văn là tìm hiểu và trình bày lại một số bất đẳng thức mới dạng Hermite–Hadamard–Féjer cho hàm p-lồi. Mời các bạn tham khảo!
Nội dung trích xuất từ tài liệu:
Luận văn Thạc sĩ Toán học: Bất đẳng thức dạng hermite–hadamard–fejér cho hàm p lồi ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC ——————–o0o——————– NINH THỊ LƯU BẤT ĐẲNG THỨC DẠNGHERMITE–HADAMARD–FEJÉR CHO HÀM P -LỒI THÁI NGUYÊN – 2019 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC ——————–o0o——————– NINH THỊ LƯU BẤT ĐẲNG THỨC DẠNGHERMITE–HADAMARD–FEJÉR CHO HÀM P -LỒI CHUYÊN NGÀNH: PHƯƠNG PHÁP TOÁN SƠ CẤP MÃ SỐ: 8 46 01 13 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC PGS.TS. NGUYỄN THỊ THU THỦY THÁI NGUYÊN – 2019 iMục lụcBảng ký hiệu 1Mở đầu 21 Bất đẳng thức tích phân dạng Hermite–Hadamard–Féjer cho hàm lồi 4 1.1 Hàm lồi. Hàm đối xứng . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.1 Hàm lồi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2 Hàm đối xứng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Bất đẳng thức Hermite–Hadamard–Féjer . . . . . . . . . . . . . . . . . . 7 1.2.1 Bất đẳng thức tích phân dạng Hermite–Hadamard–Féjer . . . . 7 1.2.2 Ví dụ áp dụng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Bất đẳng thức tích phân dạng Hermite–Hadamard–Féjer cho hàm p-lồi 19 2.1 Bất đẳng thức tích phân dạng Hermite–Hadamard–Féjer cho hàm p-lồi 19 2.1.1 Hàm p-lồi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 Bất đẳng thức tích phân dạng Hermite–Hadamard–Féjer . . . . 21 2.2 Áp dụng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Kết luận 39Tài liệu tham khảo 40 1Bảng ký hiệuR tập số thựcRn không gian Euclid n-chiềuI tập con của tập số thực RI◦ phần trong của tập IL[a, b] không gian các hàm khả tích trên đoạn [a, b] 2Mở đầu Cho f : C ⊂ R → R là một hàm lồi xác định trên tập con C của tập số thực R vàa, b ∈ C với a 6= b. Bất đẳng thức a + b Z b 1 f (a) + f (b) f ≤ f (x)dx ≤ (1) 2 b−a a 2nổi tiếng được biết dưới tên gọi bất đẳng thức Hermite–Hadamard (xem [4]). Hầu hết các bất đẳng thức nổi tiếng liên quan đến giá trị trung bình của tích phâncủa hàm lồi f đều ở dạng bất đẳng thức Hermite–Hadamard hoặc dạng trọng số củanó, bất đẳng thức Hermite–Hadamard–Féjer. Trong [3], Fejér xây dựng bất đẳng thức, mang tên ông Fejér, mở rộng của bấtđẳng thức Hermite–Hadamard (1): a+b Z b Z b f (a) + f (b) Z b f w(x)dx ≤ f (x)w(x)dx ≤ w(x)dx, (2) 2 a a 2 a a+bở đây w : [a, b] → R là một hàm không âm, khả tích và đối xứng ứng với . 2 Trong trường hợp hàm f : C ⊂ (0; ∞) → R là hàm p-lồi, p ∈ R {0}, và a, b ∈ C vớia < b, bất đẳng thức Hermite–Hadamard được xây dựng ở dạng h ap + bp i1/p Z b p f (x) f (a) + f (b) f ≤ p dx ≤ , (3) 2 b − ap a x 1−p 2nếu hàm f khả tích trên đoạn [a, b]. Nhiều tác giả đã xây dựng các bất đẳng thức mới dạng Hermite–Hadamard–Féjercho một số lớp hàm lồi khác nhau và đưa ra các ứng dụng đánh giá một số giá trịtrung bình đặc biệt từ các bất đẳng thức này. Mục tiêu của đề tài luận ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: