Danh mục

Luận văn Thạc sĩ Toán học: Vành tự đồng cấu của P – Nhóm Abel

Số trang: 31      Loại file: pdf      Dung lượng: 1.02 MB      Lượt xem: 17      Lượt tải: 0    
Thư viện của tui

Phí tải xuống: 31,000 VND Tải xuống file đầy đủ (31 trang) 0
Xem trước 4 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Mọi nhóm Abel đều là một module trên vành tự đồng cấu của mình, hơn nữa các tính chất của vành đồng cấu phản ánh nhiều thông tin về bản thân nhóm Abel. Nội dung chính của luận văn là nghiên cứu và trình bày có hệ thống những kết quả về tự đồng cấu của p - nhóm Abel bị chặn.
Nội dung trích xuất từ tài liệu:
Luận văn Thạc sĩ Toán học: Vành tự đồng cấu của P – Nhóm Abel BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH Nguyễn Ngọc Dũng VÀNH TỰ ĐỒNG CẤU CỦA P – NHÓM ABEL LUẬN VĂN THẠC SĨ TOÁN HỌC Thành phố Hồ Chí Minh - 2020 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH Nguyễn Ngọc Dũng VÀNH TỰ ĐỒNG CẤU CỦA P – NHÓM ABEL Chuyên ngành : Đại số và lý thuyết số Mã số : 8460104 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: TS. PHẠM THỊ THU THỦY Thành phố Hồ Chí Minh – 2020 LỜI CAM ĐOAN Tôi xin cam đoan, dưới sự chỉ bảo và hướng dẫn của TS. Phạm Thị Thu Thủy, luận văn chuyên ngành Đại số và lý thuyết số với đề tài: “Vành tự đồng cấu của p - nhóm Abel” được hoàn thành bởi sự nhận thức và tìm hiểu của bản thân tác giả. Trong quá trình nghiên cứu và thực hiện luận văn, tác giả đã kế thừa những kết quả của các nhà khoa học với sự trân trọng và biết ơn. TP. Hồ Chí Minh, tháng 05 năm 2020 Tác giả Nguyễn Ngọc Dũng LỜI CẢM ƠN Lời đầu tiên của luận văn tôi xin bày tỏ lòng biết ơn chân thành và sâu sắc nhất tới cô giáo hướng dẫn TS. Phạm Thị Thu Thủy, người đã định hướng chọn đề tài và tận tình hướng dẫn, giúp đỡ tôi trong suốt quá trình làm và hoàn thiện luận văn này. Tôi cũng xin bày tỏ lòng biết ơn chân thành tới quý thầy cô trong khoa Toán - Tin học, trường Đại học Sư Phạm Thành phố Hồ Chí Minh. Quý thầy cô đã trực tiếp giảng dạy, giúp đỡ tôi rất nhiều trong việc hoàn thành luận văn này. Tôi cũng không quên bày tỏ lòng biết ơn đối với quý thầy cô trong Ban giám hiệu trường Đại học Sư phạm thành phố Hồ Chí Minh, đặc biệt là quý thầy cô trong phòng Sau Đại học đã tạo mọi điều kiện thuận lợi để tôi học tập và làm việc trong suốt quá trình học Cao học. Nhân dịp này tôi cũng xin được gửi lời cảm ơn tới gia đình, người thân và bạn bè, những người luôn bên cạnh động viên, giúp đỡ, ủng hộ tôi cả về vật chất và tinh thần trong suốt quá trình học tập và hoàn thành luận văn này. Mặc dù đã có nhiều cố gắng trong suốt quá trình thực hiện đề tài, song có thể còn có những mặt hạn chế, thiếu sót. Tôi rất mong nhận được ý kiến đóng góp và sự chỉ dẫn của các thầy cô giáo và các bạn học viên. TP. Hồ Chí Minh, tháng 05 năm 2020 Tác giả Nguyễn Ngọc Dũng MỤC LỤC LỜI CAM ĐOAN LỜI CẢM ƠN MỤC LỤC LỜI MỞ ĐẦU ............................................................................................................1 Chương 1. KIẾN THỨC CHUẨN BỊ ......................................................................2 1.1 Nhóm Abel ........................................................................................................ 2 1.2 Một số kết quả của lý thuyết tập hợp ................................................................ 8 Chương 2. TỰ ĐỒNG CẤU CỦA NHÓM ABEL XOẮN ..................................11 2.1 Định nghĩa và một số tính chất của tự đồng cấu của nhóm Abel ................... 11 2.2 Tự đồng cấu của p - nhóm Abel bị chặn ........................................................ 16 KẾT LUẬN ..............................................................................................................24 TÀI LIỆU THAM KHẢO ......................................................................................25 DANH MỤC CÁC KÝ HIỆU : Tập hợp các số tự nhiên. * : Tập hợp các số tự nhiên khác 0 . : Tập hợp các số nguyên. : Tập hợp các số hữu tỉ. ai iI : Họ các phần tử ai với i  I . a : Nhóm con sinh bởi phần tử a . p : Vành các số nguyên mod p . o a  : Cấp của phần tử a . hp  a  : p - độ cao của phần tử a . X : Lực lượng của tập hợp X . Hom  A, B  : Tập hợp các đồng cấu nhóm từ A đến B . End A : Tập hợp các tự đồng cấu nhóm của . G iI i : Tích trực tiếp của các nhóm Gi , i  I .  Gi : Tổng trực tiếp của các nhóm Gi , i  I . iI 1 LỜI MỞ ĐẦU Mọi nhóm Abel đều là một module trên vành tự đồng cấu của mình, hơn nữa các tính chất của vành đồng cấu phản ánh nhiều thông tin về bản thân nhóm Abel. Mối quan hệ giữa tính chất của nhóm Abel và tính chất của vành đồng cấu luôn là đề tài nhận được nhiều quan tâm. Mặc dù trong trường hợp chung, các kết quả về vành tự đồng cấu của nhóm Abel còn khá rời rạc, nhưng đối với lớp nhóm Abel xoắn, cụ thể là các p - nhóm Abel, nhiều kết quả đẹp đã đạt được trong các công trình của Baer, Kaplansky, Richman, Walker, Pierce v.v. Nội dung chính của luận văn là nghiên cứu và trình bày có hệ thống những kết quả về tự đồng cấu của p - nhóm Abel bị chặn. Luận văn gồm hai chương: Chương 1: Kiến thức chuẩn bị. Chương 2: Vành tự đồng cấu của nhóm Abel xoắn. Chương 2 gồm 2 bài. Bài 2.1 trang bị các kiến thức chung về tự đồng cấu của nhóm Abel. Bài 2.2 trình bày các kết quả về tự đồng cấu của p - nhóm Abel bị chặn. 2 Chương 1. KIẾN THỨC CHUẨN BỊ Chương này trình bày một số khái niệm về nhóm, đồng cấu nhóm, tổng trực tiếp, tích trực tiếp. Trình bày định lý ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: