Luận văn: Thuật toán tìm nghiệm tối ưu toàn cục khi luyện mạng nơron
Số trang: 28
Loại file: pdf
Dung lượng: 740.19 KB
Lượt xem: 8
Lượt tải: 0
Xem trước 3 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Luận văn: Thuật toán tìm nghiệm tối ưu toàn cục khi luyện mạng nơron có mục tiêu nhằm đề xuất mô hình kết hợp thuật toán vượt khe và giải thuật di truyền để huấn luyện mạng nơron; xây dựng bộ công cụ phần mềm luyện mạng nơron cho một số bài toán có mặt lỗi đặc biệt, làm cơ sở bổ sung vào Neural Toolbox Matlab.
Nội dung trích xuất từ tài liệu:
Luận văn: Thuật toán tìm nghiệm tối ưu toàn cục khi luyện mạng nơron1MỞ ĐẦU 1. Tính cấp thiết của đề tài Trong rất nhiều lĩnh vực như điều khiển, tự động hóa, công nghệ thông tin…, nhận dạng được đối tượng là vấn đề mấu chốt quyết định sự thành công của bài toán. Một nhược điểm khi dùng mạng nơron là chưa có phương pháp luận chung khi thiết kế cấu trúc mạng cho các bài toán nhận dạng và điều khiển mà phải cần tới kiến thức của chuyên gia. Mặt khác khi xấp xỉ mạng nơron với một hệ phi tuyến sẽ khó khăn khi luyện mạng vì có thể không tìm được điểm tối ưu toàn cục... Hiện nay, việc nghiên cứu các thuật toán tìm nghiệm tối ưu toàn cục khi luyện mạng nơron đã được một số tác giả nghiên cứu áp dụng. Tuy nhiên khi sử dụng mạng nơron để xấp xỉ một số đối tượng phi tuyến mà mặt lỗi sinh ra có dạng lòng khe, việc huấn luyện mạng gặp rất nhiều khó khăn. Nội dung đề tài sẽ đi nghiên cứu một thuật toán tìm điểm tối ưu toàn cục trong quá trình luyện mạng nơron bằng thuật toán vượt khe có sự kết hợp với giải thuật di truyền. 2. Mục tiêu của luận án - Đề xuất mô hình kết hợp thuật toán vượt khe và giải thuật di truyền để huấn luyện mạng nơron. - Xây dựng bộ công cụ phần mềm luyện mạng nơron cho một số bài toán có mặt lỗi đặc biệt, làm cơ sở bổ sung vào Neural Toolbox Matlab. 3. Nội dung chính của luận án - Nghiên cứu lí thuyết về thuật toán vượt khe và xây dựng thuật toán tính bước học vượt khe. - Xây dựng thuật toán huấn luyện mạng nơron bằng kỹ thuật lan tuyền ngược kết hợp với thuật toán vượt khe.2- Đề xuất thuật toán huấn luyện mạng nơron bằng kỹ thuật lan truyền ngược có sử dụng giải thuật di truyền kết hợp với thuật toán vượt khe. - Viết và cài đặt chương trình huấn luyện mạng nơron trên C++. - Viết và cài đặt chương trình huấn luyện mạng nơron trên Matlab. CHƢƠNG 1 MẠNG NƠRON VÀ QUÁ TRÌNH HỌC CỦA MẠNG NƠRON 1.1. 1.1.1. Giới thiệu về mạng nơron và quá trình học của mạng nơron Mạng nơron và các phương pháp họcMạng nơron nhân tạo, gọi tắt là mạng nơron, là một mô hình xử lý thông tin phỏng theo cách thức xử lý thông tin của các hệ nơron sinh học. Nó được tạo lên từ một số lượng lớn các phần tử (gọi là nơron) kết nối với nhau thông qua các liên kết (gọi là trọng số liên kết) làm việc như một thể thống nhất để giải quyết một vấn đề cụ thể nào đó. Một mạng nơron nhân tạo được cấu hình cho một ứng dụng cụ thể (nhận dạng mẫu, phân loại dữ liệu,...) thông qua một quá trình học từ tập các mẫu huấn luyện. Về bản chất học chính là quá trình hiệu chỉnh trọng số liên kết giữa các nơron sao cho giá trị hàm lỗi là nhỏ nhất. Có ba phương pháp học phổ biến là học có giám sát, học không giám sát và học tăng cường. Học có giám sát là phương pháp được sử dụng phổ biến nhất, trong đó tiêu biểu là kỹ thuật lan truyền ngược. 1.1.2. Đánh giá các nhân tố của quá trình học 1.1.2.1. Khởi tạo các trọng số Do bản chất của giải thuật học lan truyền ngược sai số là phương pháp giảm độ lệch gradient nên việc khởi tạo các giá trị ban đầu của các trọng số các giá trị nhỏ ngẫu nhiên sẽ làm cho mạng hội tụ về các giá trị cực tiểu khác nhau.31.1.2.2. Bước học α Việc chọn hằng số học ban đầu là rất quan trọng. Với mỗi bài toán ta lại có phương án chọn hệ số học khác nhau. Khi một quá trình huấn luyện theo kỹ thuật lan truyền ngược hội tụ, ta chưa thể khẳng định được nó đã hội tụ đến phương án tối ưu. Ta cần phải thử với một số điều kiện ban đầu để đảm bảo thu được phương án tối ưu. 1.2. 1.2.1. Nhận dạng hệ thống sử dụng mạng nơron Nhận dạng hệ thống1.2.1.1. Tại sao phải nhận dạng Bài toán nhận dạng là một vấn đề đặt lên hàng đầu trong nhiều các lĩnh vực khác nhau như: điện tử y sinh, điện tử viễn thông, hệ thống điện, tự động hóa và điều khiển… Ví dụ như: nhận dạng vân tay, nhận dạng ký tự, ảnh, tiếng nói, phát hiện và chẩn đoán bệnh... 1.2.2. Nhận dạng hệ thống sử dụng mạng nơron 1.2.2.1. Khả năng sử dụng mạng nơron trong nhận dạng Xét trường hợp đối tượng phi tuyến có độ phức tạp cao, nếu sử dụng phương pháp giải tích thông thường để nhận dạng sẽ rất khó khăn, thậm chí không thực hiện được do sự hiểu biết nghèo nàn về đối tượng. Vì vậy các nhà khoa học đã đưa ra ý tưởng là sử dụng công cụ tính toán mềm như hệ mờ, mạng nơron, đại số gia tử để xấp xỉ chính là nhận dạng đối tượng. Mạng nơron là một trong những công cụ hữu hiệu để nhận dạng mô hình đối tượng, bằng phương pháp này ta không biết được mô hình toán thực sự của đối tượng nhưng hoàn toàn có thể sử dụng kết quả xấp xỉ để thay thế đối tượng. 1.2.2.2. Mô hình nhận dạng hệ thống sử dụng mạng nơron Nhận dạng gồm: nhận dạng mô hình và nhận dạng tham số. Nhận dạng mô hình là quá trình xác định mô hình của đối tượng và thông số trên cơ sở đầu vào và đầu ra của đối tượng. Mô hình thu được sau khi nhận dạng gọi là tốt nếu nó thể hiện được đúng đối4tượng. Như vậy có thể sử dụng mô hình thay cho đối tượng để dự báo, kiểm tra và điều khiển. Mạng nơron được huấn luyện để mô hình hóa quan hệ vào ra của đối tượng. Như vậy quy trình nhận dạng ...
Nội dung trích xuất từ tài liệu:
Luận văn: Thuật toán tìm nghiệm tối ưu toàn cục khi luyện mạng nơron1MỞ ĐẦU 1. Tính cấp thiết của đề tài Trong rất nhiều lĩnh vực như điều khiển, tự động hóa, công nghệ thông tin…, nhận dạng được đối tượng là vấn đề mấu chốt quyết định sự thành công của bài toán. Một nhược điểm khi dùng mạng nơron là chưa có phương pháp luận chung khi thiết kế cấu trúc mạng cho các bài toán nhận dạng và điều khiển mà phải cần tới kiến thức của chuyên gia. Mặt khác khi xấp xỉ mạng nơron với một hệ phi tuyến sẽ khó khăn khi luyện mạng vì có thể không tìm được điểm tối ưu toàn cục... Hiện nay, việc nghiên cứu các thuật toán tìm nghiệm tối ưu toàn cục khi luyện mạng nơron đã được một số tác giả nghiên cứu áp dụng. Tuy nhiên khi sử dụng mạng nơron để xấp xỉ một số đối tượng phi tuyến mà mặt lỗi sinh ra có dạng lòng khe, việc huấn luyện mạng gặp rất nhiều khó khăn. Nội dung đề tài sẽ đi nghiên cứu một thuật toán tìm điểm tối ưu toàn cục trong quá trình luyện mạng nơron bằng thuật toán vượt khe có sự kết hợp với giải thuật di truyền. 2. Mục tiêu của luận án - Đề xuất mô hình kết hợp thuật toán vượt khe và giải thuật di truyền để huấn luyện mạng nơron. - Xây dựng bộ công cụ phần mềm luyện mạng nơron cho một số bài toán có mặt lỗi đặc biệt, làm cơ sở bổ sung vào Neural Toolbox Matlab. 3. Nội dung chính của luận án - Nghiên cứu lí thuyết về thuật toán vượt khe và xây dựng thuật toán tính bước học vượt khe. - Xây dựng thuật toán huấn luyện mạng nơron bằng kỹ thuật lan tuyền ngược kết hợp với thuật toán vượt khe.2- Đề xuất thuật toán huấn luyện mạng nơron bằng kỹ thuật lan truyền ngược có sử dụng giải thuật di truyền kết hợp với thuật toán vượt khe. - Viết và cài đặt chương trình huấn luyện mạng nơron trên C++. - Viết và cài đặt chương trình huấn luyện mạng nơron trên Matlab. CHƢƠNG 1 MẠNG NƠRON VÀ QUÁ TRÌNH HỌC CỦA MẠNG NƠRON 1.1. 1.1.1. Giới thiệu về mạng nơron và quá trình học của mạng nơron Mạng nơron và các phương pháp họcMạng nơron nhân tạo, gọi tắt là mạng nơron, là một mô hình xử lý thông tin phỏng theo cách thức xử lý thông tin của các hệ nơron sinh học. Nó được tạo lên từ một số lượng lớn các phần tử (gọi là nơron) kết nối với nhau thông qua các liên kết (gọi là trọng số liên kết) làm việc như một thể thống nhất để giải quyết một vấn đề cụ thể nào đó. Một mạng nơron nhân tạo được cấu hình cho một ứng dụng cụ thể (nhận dạng mẫu, phân loại dữ liệu,...) thông qua một quá trình học từ tập các mẫu huấn luyện. Về bản chất học chính là quá trình hiệu chỉnh trọng số liên kết giữa các nơron sao cho giá trị hàm lỗi là nhỏ nhất. Có ba phương pháp học phổ biến là học có giám sát, học không giám sát và học tăng cường. Học có giám sát là phương pháp được sử dụng phổ biến nhất, trong đó tiêu biểu là kỹ thuật lan truyền ngược. 1.1.2. Đánh giá các nhân tố của quá trình học 1.1.2.1. Khởi tạo các trọng số Do bản chất của giải thuật học lan truyền ngược sai số là phương pháp giảm độ lệch gradient nên việc khởi tạo các giá trị ban đầu của các trọng số các giá trị nhỏ ngẫu nhiên sẽ làm cho mạng hội tụ về các giá trị cực tiểu khác nhau.31.1.2.2. Bước học α Việc chọn hằng số học ban đầu là rất quan trọng. Với mỗi bài toán ta lại có phương án chọn hệ số học khác nhau. Khi một quá trình huấn luyện theo kỹ thuật lan truyền ngược hội tụ, ta chưa thể khẳng định được nó đã hội tụ đến phương án tối ưu. Ta cần phải thử với một số điều kiện ban đầu để đảm bảo thu được phương án tối ưu. 1.2. 1.2.1. Nhận dạng hệ thống sử dụng mạng nơron Nhận dạng hệ thống1.2.1.1. Tại sao phải nhận dạng Bài toán nhận dạng là một vấn đề đặt lên hàng đầu trong nhiều các lĩnh vực khác nhau như: điện tử y sinh, điện tử viễn thông, hệ thống điện, tự động hóa và điều khiển… Ví dụ như: nhận dạng vân tay, nhận dạng ký tự, ảnh, tiếng nói, phát hiện và chẩn đoán bệnh... 1.2.2. Nhận dạng hệ thống sử dụng mạng nơron 1.2.2.1. Khả năng sử dụng mạng nơron trong nhận dạng Xét trường hợp đối tượng phi tuyến có độ phức tạp cao, nếu sử dụng phương pháp giải tích thông thường để nhận dạng sẽ rất khó khăn, thậm chí không thực hiện được do sự hiểu biết nghèo nàn về đối tượng. Vì vậy các nhà khoa học đã đưa ra ý tưởng là sử dụng công cụ tính toán mềm như hệ mờ, mạng nơron, đại số gia tử để xấp xỉ chính là nhận dạng đối tượng. Mạng nơron là một trong những công cụ hữu hiệu để nhận dạng mô hình đối tượng, bằng phương pháp này ta không biết được mô hình toán thực sự của đối tượng nhưng hoàn toàn có thể sử dụng kết quả xấp xỉ để thay thế đối tượng. 1.2.2.2. Mô hình nhận dạng hệ thống sử dụng mạng nơron Nhận dạng gồm: nhận dạng mô hình và nhận dạng tham số. Nhận dạng mô hình là quá trình xác định mô hình của đối tượng và thông số trên cơ sở đầu vào và đầu ra của đối tượng. Mô hình thu được sau khi nhận dạng gọi là tốt nếu nó thể hiện được đúng đối4tượng. Như vậy có thể sử dụng mô hình thay cho đối tượng để dự báo, kiểm tra và điều khiển. Mạng nơron được huấn luyện để mô hình hóa quan hệ vào ra của đối tượng. Như vậy quy trình nhận dạng ...
Tìm kiếm theo từ khóa liên quan:
Luận văn Công nghệ thông tin Thuật toán tìm nghiệm tối ưu Luyện mạng nơron Công nghệ thông tin Mạng máy tính Mạng thần kinh nhân tạoGợi ý tài liệu liên quan:
-
52 trang 409 1 0
-
Top 10 mẹo 'đơn giản nhưng hữu ích' trong nhiếp ảnh
11 trang 291 0 0 -
Báo cáo thực tập thực tế: Nghiên cứu và xây dựng website bằng Wordpress
24 trang 283 0 0 -
74 trang 275 0 0
-
96 trang 275 0 0
-
Tài liệu dạy học môn Tin học trong chương trình đào tạo trình độ cao đẳng
348 trang 265 1 0 -
Đồ án tốt nghiệp: Xây dựng ứng dụng di động android quản lý khách hàng cắt tóc
81 trang 261 0 0 -
EBay - Internet và câu chuyện thần kỳ: Phần 1
143 trang 251 0 0 -
Giáo án Tin học lớp 9 (Trọn bộ cả năm)
149 trang 246 0 0 -
Tài liệu hướng dẫn sử dụng thư điện tử tài nguyên và môi trường
72 trang 241 0 0