Luận văn: Về một biến của modun hữa hạn sinh trên vành địa phương
Số trang: 50
Loại file: pdf
Dung lượng: 497.65 KB
Lượt xem: 13
Lượt tải: 0
Xem trước 5 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tham khảo luận văn - đề án luận văn:về một biến của modun hữa hạn sinh trên vành địa phương, luận văn - báo cáo, khoa học tự nhiên phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Luận văn:Về một biến của modun hữa hạn sinh trên vành địa phương Bé gi¸o dôc vµ ®µo t¹o Tr-êng §¹i häc Quy nh¬n TrÇn Ngäc Anh VÒ mét bÊt biÕn cña m«®unh÷u h¹n sinh trªn vµnh ®Þa ph-¬ng LuËn v¨n th¹c sü to¸n häc Chuyªn ngµnh: §¹i sè vµ lý thuyÕt sè M· sè: 60.46.05Ng-êi h-íng dÉn khoa häc: PGS.TS. NguyÔn §øc Minh Quy nh¬n, n¨m 2008 1 Môc LôcB¶ng c¸c kÝ hiÖu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Më ®Çu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Ch-¬ng 1. KiÕn thøc chuÈn bÞ . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Lý thuyÕt vÒ sù ph©n tÝch nguyªn s¬ . . . . . . . . . . . . . . . . . . 1.1 5 Lý thuyÕt béi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 7 M«®un Cohen-Macaulay vµ m«®un Cohen-Macaulay suy réng . . . 1.3 9 Lý thuyÕt kiÓu ®a thøc . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4Ch-¬ng 2. Läc chiÒu vµ hÖ tham sè tèt . . . . . . . . . . . . . . . . . . . . 14 HÖ tham sè tèt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1 §Æc tr-ng cña m«®un Cohen - Macaulay d·y qua hÖ tham sè tèt . 22 2.2 Läc chiÒu cña m«®un ®Þa ph-¬ng ho¸ . . . . . . . . . . . . . . . . . 31 2.3Ch-¬ng 3. BÊt biÕn pF (M ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Sù tån t¹i cña bÊt biÕn pF (M ) . . . . . . . . . . . . . . . . . . . . . 34 3.1 Liªn hÖ gi÷a bÊt biÕn pF (M ) vµ quü tÝch c¸c ®iÓm kh«ng Cohen- 3.2 Macaulay d·y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42KÕt luËn cña luËn v¨n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46Tµi liÖu tham kh¶o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2 b¶ng c¸c kÝ hiÖu• Ann(M ): linh ho¸ tö cña R-m«®un M .• dimM : sè chiÒu cña R-m«®un M .• Exti (N, M ): hµm tö më réng thø i cña c¸c R-m«®un M, N . R• Hi ((M ): m«®un ®èi ®ång ®iÒu ®Þa ph-¬ng thø i cña R-m«®un M øng víi i®ªan mcùc ®¹i m.• (M ): ®é dµi cña R-m«®un M .• Supp(M ): tËp hîp c¸c i®ªan nguyªn tè cña vµnh R sao cho Mp = 0. 3 Më ®Çu Cho (R, m) lµ vµnh ®Þa ph-¬ng giao ho¸n Noether, M lµ R-m«®un h÷u h¹nsinh cã chiÒu d vµ x = (x1, ..., xd) lµ hÖ tham sè cña M , kÝ hiÖu n = (n1 , ..., nd) lµbé d-sè nguyªn d-¬ng. XÐt hiÖu IM (n, x) = (M/(xn1 , ..., xnd )M ) − n1...nde(x1, ..., xd; M ), 1 dnh- mét hµm theo n. Trong tµi liÖu [5], NguyÔn Tù C-êng ®· chøng minh r»nghµm nµy kh«ng lµ mét ®a thøc trong tr-êng hîp tæng qu¸t nh-ng nã bÞ chÆn trªnbëi mét ®a thøc vµ bËc nhá nhÊt cña tÊt c¶ c¸c ®a thøc chÆn trªn hµm IM (n, x)kh«ng phô thuéc vµo c¸ch chän hÖ tham sè x. BÊt biÕn nµy gäi lµ kiÓu ®a thøccña M , kÝ hiÖu lµ p(M ) vµ bÊt biÕn nµy ®óng b»ng chiÒu cña quü tÝch kh«ngCohen - Macaulay khi R lµ th-¬ng cña mét vµnh Cohen - Macaulay. XÐt läc h÷u h¹n c¸c m«®un con cña M lµ F : M0 ⊂ M1 ⊂ ... ⊂ Mt = M saocho dimM0 < dimM1 < ... < dimMt = dimM . Mét läc nh- vËy gäi lµ tho¶ m·n®iÒu kiÖn chiÒu. Cho x = (x1 , ..., xd) lµ mét hÖ tham sè cña M . Khi ®ã x ®-îcgäi lµ mét hÖ tham sè tèt t-¬ng øng víi läc F nÕu Mi ∩ (xdi +1 , ..., xd)M = 0 víi i = 0, 1, ..., t − 1 vµ di = dimMi .§Æt t (M/(xn1 , ..., xnd )M ) IF ,M (x(n)) = − n1 ...ndi e(x1, ..., xdi ; Mi ), 1 d i=0ë ®©y e(x1, ..., xdi ; Mi ) lµ béi Serre cña Mi øng víi hÖ (x1, ..., xdi ) vµ x = (x1, ..., xd)lµ mét hÖ tham sè tèt cña M t-¬ng øng víi läc F . C©u hái ®Æt ra lµ c¸c kÕt qu¶trªn cã cßn ®óng cho hµm IF ,M (x(n)). Môc ®Ých cña luËn v¨n nµy lµ tr×nh bµy mét sè kÕt qu¶ trong [7] vµ [9] liªnquan ®Õn bÊt biÕn pF (M ) ( ®-îc ®Þnh nghÜa lµ bËc nhá nhÊt cña tÊt c¶ c¸c ®athøc theo n chÆn trªn hµm IF ,M (x(n)) ). Bªn c¹nh viÖc ®-a ra nhiÒu chøng minhchi tiÕt cho c¸c kÕt qu¶ ®· cã trong [7] vµ [9], chóng t«i còng t×m ®-îc mét kÕtqu¶ míi ch-a ®-îc ®Ò cËp ®Õn trong hai bµi b¸o nãi trªn. Ngoµi phÇn Më ®Çu, KÕt luËn vµ ...
Nội dung trích xuất từ tài liệu:
Luận văn:Về một biến của modun hữa hạn sinh trên vành địa phương Bé gi¸o dôc vµ ®µo t¹o Tr-êng §¹i häc Quy nh¬n TrÇn Ngäc Anh VÒ mét bÊt biÕn cña m«®unh÷u h¹n sinh trªn vµnh ®Þa ph-¬ng LuËn v¨n th¹c sü to¸n häc Chuyªn ngµnh: §¹i sè vµ lý thuyÕt sè M· sè: 60.46.05Ng-êi h-íng dÉn khoa häc: PGS.TS. NguyÔn §øc Minh Quy nh¬n, n¨m 2008 1 Môc LôcB¶ng c¸c kÝ hiÖu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Më ®Çu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Ch-¬ng 1. KiÕn thøc chuÈn bÞ . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Lý thuyÕt vÒ sù ph©n tÝch nguyªn s¬ . . . . . . . . . . . . . . . . . . 1.1 5 Lý thuyÕt béi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 7 M«®un Cohen-Macaulay vµ m«®un Cohen-Macaulay suy réng . . . 1.3 9 Lý thuyÕt kiÓu ®a thøc . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4Ch-¬ng 2. Läc chiÒu vµ hÖ tham sè tèt . . . . . . . . . . . . . . . . . . . . 14 HÖ tham sè tèt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1 §Æc tr-ng cña m«®un Cohen - Macaulay d·y qua hÖ tham sè tèt . 22 2.2 Läc chiÒu cña m«®un ®Þa ph-¬ng ho¸ . . . . . . . . . . . . . . . . . 31 2.3Ch-¬ng 3. BÊt biÕn pF (M ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Sù tån t¹i cña bÊt biÕn pF (M ) . . . . . . . . . . . . . . . . . . . . . 34 3.1 Liªn hÖ gi÷a bÊt biÕn pF (M ) vµ quü tÝch c¸c ®iÓm kh«ng Cohen- 3.2 Macaulay d·y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42KÕt luËn cña luËn v¨n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46Tµi liÖu tham kh¶o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2 b¶ng c¸c kÝ hiÖu• Ann(M ): linh ho¸ tö cña R-m«®un M .• dimM : sè chiÒu cña R-m«®un M .• Exti (N, M ): hµm tö më réng thø i cña c¸c R-m«®un M, N . R• Hi ((M ): m«®un ®èi ®ång ®iÒu ®Þa ph-¬ng thø i cña R-m«®un M øng víi i®ªan mcùc ®¹i m.• (M ): ®é dµi cña R-m«®un M .• Supp(M ): tËp hîp c¸c i®ªan nguyªn tè cña vµnh R sao cho Mp = 0. 3 Më ®Çu Cho (R, m) lµ vµnh ®Þa ph-¬ng giao ho¸n Noether, M lµ R-m«®un h÷u h¹nsinh cã chiÒu d vµ x = (x1, ..., xd) lµ hÖ tham sè cña M , kÝ hiÖu n = (n1 , ..., nd) lµbé d-sè nguyªn d-¬ng. XÐt hiÖu IM (n, x) = (M/(xn1 , ..., xnd )M ) − n1...nde(x1, ..., xd; M ), 1 dnh- mét hµm theo n. Trong tµi liÖu [5], NguyÔn Tù C-êng ®· chøng minh r»nghµm nµy kh«ng lµ mét ®a thøc trong tr-êng hîp tæng qu¸t nh-ng nã bÞ chÆn trªnbëi mét ®a thøc vµ bËc nhá nhÊt cña tÊt c¶ c¸c ®a thøc chÆn trªn hµm IM (n, x)kh«ng phô thuéc vµo c¸ch chän hÖ tham sè x. BÊt biÕn nµy gäi lµ kiÓu ®a thøccña M , kÝ hiÖu lµ p(M ) vµ bÊt biÕn nµy ®óng b»ng chiÒu cña quü tÝch kh«ngCohen - Macaulay khi R lµ th-¬ng cña mét vµnh Cohen - Macaulay. XÐt läc h÷u h¹n c¸c m«®un con cña M lµ F : M0 ⊂ M1 ⊂ ... ⊂ Mt = M saocho dimM0 < dimM1 < ... < dimMt = dimM . Mét läc nh- vËy gäi lµ tho¶ m·n®iÒu kiÖn chiÒu. Cho x = (x1 , ..., xd) lµ mét hÖ tham sè cña M . Khi ®ã x ®-îcgäi lµ mét hÖ tham sè tèt t-¬ng øng víi läc F nÕu Mi ∩ (xdi +1 , ..., xd)M = 0 víi i = 0, 1, ..., t − 1 vµ di = dimMi .§Æt t (M/(xn1 , ..., xnd )M ) IF ,M (x(n)) = − n1 ...ndi e(x1, ..., xdi ; Mi ), 1 d i=0ë ®©y e(x1, ..., xdi ; Mi ) lµ béi Serre cña Mi øng víi hÖ (x1, ..., xdi ) vµ x = (x1, ..., xd)lµ mét hÖ tham sè tèt cña M t-¬ng øng víi läc F . C©u hái ®Æt ra lµ c¸c kÕt qu¶trªn cã cßn ®óng cho hµm IF ,M (x(n)). Môc ®Ých cña luËn v¨n nµy lµ tr×nh bµy mét sè kÕt qu¶ trong [7] vµ [9] liªnquan ®Õn bÊt biÕn pF (M ) ( ®-îc ®Þnh nghÜa lµ bËc nhá nhÊt cña tÊt c¶ c¸c ®athøc theo n chÆn trªn hµm IF ,M (x(n)) ). Bªn c¹nh viÖc ®-a ra nhiÒu chøng minhchi tiÕt cho c¸c kÕt qu¶ ®· cã trong [7] vµ [9], chóng t«i còng t×m ®-îc mét kÕtqu¶ míi ch-a ®-îc ®Ò cËp ®Õn trong hai bµi b¸o nãi trªn. Ngoµi phÇn Më ®Çu, KÕt luËn vµ ...
Tìm kiếm theo từ khóa liên quan:
luận văn chuyên đề toán học bài toán nội suy Lagrange khai triển Tatlor bài toán nội suy ứng dụng bài toán nội suyGợi ý tài liệu liên quan:
-
Thảo luận đề tài: Mối quan hệ giữa đầu tư theo chiều rộng và đầu tư theo chiều sâu
98 trang 308 0 0 -
Luận văn: Thiết kế xây dựng bộ đếm xung, ứng dụng đo tốc độ động cơ trong hệ thống truyền động điện
63 trang 237 0 0 -
79 trang 229 0 0
-
Đồ án: Kỹ thuật xử lý ảnh sử dụng biến đổi Wavelet
41 trang 219 0 0 -
Tiểu luận: Phân tích chiến lược của Công ty Sữa Vinamilk
25 trang 217 0 0 -
LUẬN VĂN: TÌM HIỂU PHƯƠNG PHÁP HỌC TÍCH CỰC VÀ ỨNG DỤNG CHO BÀI TOÁN LỌC THƯ RÁC
65 trang 214 0 0 -
Báo cáo thực tập nhà máy đường Bến Tre
68 trang 212 0 0 -
BÀI THUYẾT TRÌNH CÔNG TY CỔ PHẦN
11 trang 205 0 0 -
Báo cáo bài tập môn học : phân tích thiết kế hệ thống
27 trang 204 0 0 -
Luận văn: Nghiên cứu văn hóa Ấn Độ
74 trang 199 0 0