Thông tin tài liệu:
Tham khảo tài liệu (luyện thi cấp tốc toán) chuyên đề giới hạn tích phân_bài tập và hướng dẫn giải, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
(Luyện thi cấp tốc Toán) Chuyên đề giới hạn tích phân_Bài tập và hướng dẫn giải TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 12 tháng 06 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 BÀI TẬP VỀ NHÀ (Giới hạn, tích phân và ứng dụng) Tính các tích phân sau: Bài 1 π 4sin 3 x I =∫ 2 dx 0 1 + cos x Bài 2: 1 xdx I =∫ ( x + 1) 0 3 Bài 3: 1 I = ∫ x x 2 + 1dx 0 Bài 4: π s inx − cos x I =∫ π 2 dx 4 1 + sin 2 x Bài 5: ln 3 e x dx I =∫ (e + 1) 0 x 3 Bài 6: π s inxdx I =∫ 2 0 1 + 3cos x Bài 7: dx 1 I =∫ 0 1 + exHocmai.vn – Ngôi trường chung của học trò Việt 1 TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 12 tháng 06 năm 2010P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Bài 8: 0 I = ∫ x 3 x + 1dx. −1 Bài 9: ln 5 e 2 x dx I =∫ . ln 2 e −1 x Bài 10: 2 I = 2∫ 6 1 − cos3 x .s inx.cos5 xdx 1 Bài 11: 1 x 2 dx I = 2∫ 0 ( x + 1) x + 1 Bài 12: ln 2 I= ∫ 0 e x − 1dx . Bài 13: π x sin x I =∫ dx 0 1 + cos x 2 Bài 14: 1 I = ∫ x ( 1− x 5 ) 3 6 dx 0 Bài 15: Page 2 of 19 TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 12 tháng 06 năm 2010P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 π 2 I = ∫ esinx .sin 2 xdx 0 Bài 16: e I = ∫ x 2 ln xdx 1 Bài 17: 1 ( 7x − 1 ) 99 I= ∫ ( 2x + 1) 0 101 dx Bài 18: π 2 ∫ I = (x + 1)sin 2xdx 0 Bài 19: 2 ln(x + 1) I= ∫ 1 x2 dx Bài 20: 2 dx I= ∫ 0 ...