Thông tin tài liệu:
Tham khảo tài liệu (luyện thi cấp tốc toán) chuyên đề hình học không gian_bài tập và hướng dẫn giải, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
(Luyện thi cấp tốc Toán) Chuyên đề hình học không gian_Bài tập và hướng dẫn giải TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 10 tháng 06 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (04) 2221-0328 BÀI TẬP VỀ NHÀ (Hình học không gian) Thể tích khối đa diện. (Các em tự vẽ hình vào các bài tập)Bài 1: Cho hình chóp S.ABC, trong đó SA vuông góc với mặt phẳng (ABC). Đáy là tam giác ABC cân tại A, độ dài trung tuyến AD là a , cạnh bên SB tạo với đáy một góc α và tạo với mặt (SAD) góc β . Tìm thể tích hình chóp S.ABCBài 2: Cho hình chóp S.ABCD có đáy là hình chữ nhật với AB = a, AD = 2a, cạnh SA vuông góc với đáy, còn cạnh SB tạo với mặt phẳng đáy góc 60o . Trên cạnh SA lấy a 3 điểm M sao cho AM = . Mặt phẳng (BCM) cắt cạnh SD tại N. Tính thể tích khối 3 chóp S.BCMNBài 3: Cho hình chóp tứ giác đều S.ABCD có cạnh bằng a , và SH là đường cao của hình chóp. Khoảng cách từ trung điểm I của SH đến mặt bên (SDC) bằng b . Tìm thể tích hình chóp S.ABCDBài 4: Tính thể tích khối tứ diện ABCD biết AB = a, AC = b, AD = c và các góc ∠BAC , ∠CAD, ∠DAB đều bằng 60o .Bài 5: Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, ∠BAD = 60o , SA ⊥ mp ( ABCD ) và SA = a . Gọi C’ là trung điểm của SC. Mặt phẳng (P) qua AC’ và song song với BD cắt các cạnh SB, SD của hình chóp lần lượt tại B’, D’. Tìm thể tích hình chóp S.AB’C’D’Bài 6: Cho hình vuông ABCD có cạnh bằng a. Qua trung điểm I của cạnh AB dựng a 3 đường thẳng (d) vuông góc với mp(ABCD). Trên (d) lấy điểm S sao cho: SI = . 2 Tìm khoảng cách từ C đến mp(SAD).Bài7: Cho hình chóp S.ABC có SA = 3a và SA ⊥ mp ( ABC ) . ∆ABC có AB = BC = 2a, ∠ABC = 120o. Tìm khoảng cách từ A đến mp(SBC).Bài 8: Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a . Gọi K là trung điểm của DD’. Tìm khoảng cách giữa CK và AD’. Hocmai.vn – Ngôi trường chung của học trò Việt TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 10 tháng 06 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (04) 2221-0328Bài 9: Cho lăng trụ đứng ABC.A’B’C’. Gọi M là trung điểm của AA’. Chứng minh rằng thiết diện C’MB chia lăng trụ thành hai phần tương đương. Bài 10: Cho hình chóp tứ giác đều S.ABCD có các mặt bên tạo với mp đáy góc 60o . 1. Vẽ thiết diện qua AC và vuông góc với mp(SAD) 2. Thiết diện chia khối chóp thành hai phần có thể tích tương ứng là V 1, V2. Tìm tỉ số V1 V2 . ………………….Hết………………… BT Viên môn Toán hocmai.vnTrịnh Hào Quang Hocmai.vn – Ngôi trường chung của học trò Việt Page 2 of 8 TRUNG TÂM BỒI DƯỠNG VĂN HÓA HOCMAI.VN ………… , ngày ….tháng… năm ….. A5+A6, 52 Nguyễn Chí Thanh Tel: 04.3775-9290 HƯỚNG DẪN GIẢI CÁC BTVN Thể tích khối đa diện. (Các em tự vẽ hình vào các bài tập)Bài 1: Cho hình chóp S.ABC, trong đó SA vuông góc với mặt phẳng (ABC). Đáy là tam giác ABC cân tại A, độ dài trung tuyến AD là a , cạnh bên SB tạo với đáy một góc α và tạo với mặt (SAD) góc β . Tìm thể tích hình chóp S.ABC 1HDG: Thể tích hình chóp S.ABC là: V = .SA.S∆ABC 3Tam giác ABC cân đỉnh A nên trung tuyến AD cũng là đường cao của tam giác. Theo giả thiết: SA ⊥ mp ( ABC ) ⇒ ∠SBA = ( SB, mp ( ABC ) ) = α BD ⊥ mp ( SAD ) ⇒ ∠BSD = βĐặt BD = x suy ra: AB = a 2 + x 2 ⇒ SA = a 2 + x 2 .tan α BD SA SB = = sin β sin α ⇒ x sin α = a 2 + x 2 tan α sin β a 2 sin 2 β ⇒x =2 cos 2α + sin 2 β 1 a 3 sin α .sin βDo đó: V = . a 2 + x 2 .tan α .a.x = 3 3cos(α + β )cos(α − β )Bài 2: Cho hình chóp S.ABCD có đáy là hình chữ nhật với AB = a, AD = 2a, cạnh SA vuông góc với đáy, còn cạnh SB tạo với mặt phẳng đáy góc 60o . Trên cạnh SA lấy a 3 điểm M sao cho AM = . Mặt phẳng (BCM) cắt cạnh SD tại N. Tính thể tích khối 3 chóp S.BCMNHDG:Theo giả thiết : SA ⊥ mp ( ABCD ) ⇒ ∠SBA = ( SB, mp ( ABCD ) ) = 60o ⇒ SA = AB.tan 60o = a 3Trong mp(SAD) kẻ MN || AD (N thuộc cạnh SD) ⇒ SD ∩ mp ( BCM ) = N Hocmai.vn – Ngôi trường chung của học trò Việt Page 3 of 8 TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 10 tháng 06 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (04) 2221-0328Theo công thức tỉ số thể tích, ta có: VSMBC SM 2 2 1 = = ⇒ VSMBC = VSABC = VS . ABCD VSABC SA 3 3 3 2 VSMNC SM SN SM 4 4 2 = . = = ⇒ VSMNC = VSADC = VS . ABCD VSADC SA SD SA 9 9 9 5 5 1 10 3 3Vậy: VS .BCMN = VSMBC + VSMNC = VS . ABCD = . .SA.S ABCD = a 9 9 3 27Bài 3: Cho hình chóp tứ giác đều ...