Thông tin tài liệu:
Tham khảo tài liệu (luyện thi cấp tốc toán) chuyên đề khảo sát hàm số_bài tập và hướng dẫn giải, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
(Luyện thi cấp tốc Toán) Chuyên đề khảo sát hàm số_Bài tập và hướng dẫn giải TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 12 tháng 06 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 BÀI TẬP VỀ NHÀ (Chuyên đề khảo sát hàm số) −x +1 Câu I: Cho hàm số y = 2 x + 1 (C)I.1. Viết phương trình tiếp tuyến đi qua điểm M(2 ; 3) đến (C)I.2. Viết phương trình tiếp tuyến với (C), biết rằng tiếp tuyến đó đi qua giao điểm của2 đường tiệm cận.I.3. Viết phương trình tiếp tuyến tại điểm M ∈ ( C ) , biết tiếp tuyến cắt 2 trục tọa độtạo thành 1 tam giác có diện tích bằng 1.I.4. Viết phương trình tiếp tuyến tại điểm M ∈ ( C ) , biết tiếp tuyến cắt 2 trục tọa độtạo thành 1 tam giác cân. ( m − 1) x + m C Câu II: Cho hàm số y = x−m ( m)II.1. CMR đồ thị hàm số luôn tiếp xúc với một đường thẳng cố định tại 1 điểm cốđịnh.II.2. Tiếp tuyến tại M ∈ ( Cm ) cắt 2 tiệm cận tại A, B. CMR M là trung điểm của ABII.3. Cho điểm M ( x 0 , y 0 ) ∈ ( C3 ) . Tiếp tuyến của ( C3 ) tại M cắt các tiệm cận của (C)tại các điểm A và B. Chứng minh diện tích tam giác AIB không đổi, I là giao của 2 tiệmcận.Tìm M để chu vi tam giác AIB nhỏ nhất. Câu III: x 2 + 2mx + 1 − 3m 2 Cho hàm số y = . Tìm tham số m để hàm số có: x−m 1. Hai điểm cực trị nằm về hai phía trục tung. 2. Hai điểm cực trị cùng với gốc tọa độ O lập thành tam giác vuông tại O 3. Hai điểm cực trị cùng với điểm M(0; 2) thẳng hàng. 4. Khoảng cách hai điểm cực trị bằng m 10 . Hocmai.vn – Ngôi trường chung của học trò Việt 1 TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 19 tháng 05 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 5. Cực trị và tính khoảng cách từ điểm cực tiểu đến TCX. 6. Cực trị và thỏa mãn: yCD + yCT > 2 3 . −x +1Câu IV: Cho hàm số y = (C) 2x +1Tìm m để (C) cắt đường thẳng ( d m ) : y = mx + 2m − 1 tại 2 điểm phân biệt A, B: a. Thuộc 2 nhánh của đồ thị (C) b. Tiếp tuyến tại A, B vuông góc với nhau uuu uuu r r c. Thỏa mãn điều kiện 4OA.OB = 5 − x 2 + 3x − 3Câu V: Cho hàm số y = (1) 2 ( x − 1) a. Tìm m để đường thẳng y = m cắt đồ thị hàm số (1) tại A và B sao cho AB=2 b. Tìm m để đường thẳng d: y = m ( x − 2 ) + 3 và đường cong (1) cắt nhau tại A, B phân biệt sao cho M(2; 3) làm trung điểm của AB.Câu VI: ( m − 1) x + m C Cho hàm số y = x−m ( m) Dựa vào đồ thị hàm số, tùy theo m hãy biện luận số nghiệm của phương trình: 2x + 3 a. − 1 = log 2 m x −3 2x + 3 b. − 2m + 1 = 0 x−3 − x2 + 3x − 3 Câu VII: Cho hàm số y = (1) 2 ( x − 1) a. Tìm trên đồ thị 2 điểm A, B thuộc 2 nhánh sao cho AB min. Page 2 of 17 TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 19 tháng 05 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 b. Tính diện tích tam giác tạo bởi tiệm cận xiên và các trục tọa độ. −x +1Câu VIII: Cho hàm số y = (C) 2x +1 a. Tìm điểm M thuộc (C) sao cho tổng khoảng cách từ M đến 2 trục tọa độ đạt GTNN b. Tìm điểm M thuộc (C) sao cho tổng khoảng cách từ M đến 2 tiệm cận đạt GTNN c. Tìm 2 điểm A; B thuộc 2 nhánh của đồ thị hàm số sao cho AB min. ………………….Hết………………… BT Viên môn Toán hocmai.vn Trịnh Hào Quang Page 3 of 17 TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 19 tháng 05 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 HDG CÁC BTVN ...