Luyện thi Đại học Kit 1 - Môn Toán: Các vấn đề về khoảng cách (Bài tập tự luyện)
Số trang: 1
Loại file: pdf
Dung lượng: 140.58 KB
Lượt xem: 13
Lượt tải: 0
Xem trước 1 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Luyện thi đại học với tài liệu bài tập tự luyện các dạng toán các vấn đề về khoảng cách (khoảng cách từ 1 điểm đến 1 mặt phẳng) của giáo viên Lê Trần Bá Phương, giúp các bạn có thể tự kiểm tra, củng cố lại kiến thức của mình chuẩn bị cho kỳ thi đạt được kết quả cao. Mời các bạn cùng tham khảo.
Nội dung trích xuất từ tài liệu:
Luyện thi Đại học Kit 1 - Môn Toán: Các vấn đề về khoảng cách (Bài tập tự luyện)Khóa học LTðH KIT-1: Môn Toán (Thầy Lê Bá Trần Phương) Các vấn ñề về khoảng cách CÁC VẤN ðỀ VỀ KHOẢNG CÁCH (KHOẢNG CÁCH TỪ 1 ðIỂM ðẾN 1 MẶT PHẲNG) BÀI TẬP TỰ LUYỆN Giáo viên: LÊ BÁ TRẦN PHƯƠNG Các bài tập trong tài liệu này ñược biên soạn kèm theo bài giảng Các vấn ñề về khoảng cách (Phần 01+02+03) thuộc khóa học Luyện thi ñại học KIT-1: Môn Toán (Thầy Lê Bá Trần Phương) tại website Hocmai.vn ñể giúp các Bạn kiểm tra, củng cố lại các kiến thức ñược giáo viên truyền ñạt trong bài giảng Các vấn ñề về khoảng cách. ðể sử dụng hiệu quả, Bạn cần học trước Bài giảng sau ñó làm ñầy ñủ các bài tập trong tài liệu này. (Tài liệu dùng chung bài 07+08+09) Bài 1. Cho hình chóp S.ABCD ñáy ABCD là hình vuông cạnh a, ( SAB ) ⊥ ( ABCD) , SA = SB, góc giữa 0 SC và (ABCD) bằng 45 . Tính khoảng cách từ B ñến mặt phẳng (SCD). Bài 2. Cho chóp S.ABCD có ñáy ABCD là hình vuông cạnh a, SA ⊥ ( ACBD ) , góc giữa mặt bên (SBC) và mặt ñáy (ABCD) bằng 600, G là trọng tâm tam giác SAD. Tính khoảng cách từ G ñến mặt phẳng (SBC). Bài 3. Cho hình chóp S.ABC có ñáy ABC là tam giác vuông cân tại A, AB = a 2 , I là trung ñiểm của BC, hình chiếu vuông góc của S lên mặt phẳng (ABC) là ñiểm H thỏa mãn I nằm giữa AH. Tính khoảng cách từ trung ñiểm K của SB tới mặt phẳng (SAH). Bài 4. Cho hình chóp S.ABC có ñáy ABC là tam giác ñều cạnh a, I là trung ñiểm của BC, D là ñiểm ñối a xứng với A qua I, SD ⊥ ( ABC ) , K là hình chiếu vuông góc của I trên SA, IK = . Tính khoảng cách từ 2 D ñến mặt phẳng (SBC). Bài 5. Cho chóp S.ABCD ñáy ABCD là hình vuông cạnh a, tam giác SAB ñều, tam giác SCD vuông cân tại S. H là hình chiếu vuông góc của S lên mặt phẳng (ABCD). Tính khoảng cách từ H ñến mặt phẳng (SCD). Bài 6. Cho hình chóp S.ABCD ñáy ABCD là hình thang vuông tại A và D, SA ⊥ ( ABCD ) , SA = a 2 , AB = 2a; AD = DC = a. Gọi M là trung ñiểm của SD. Tính khoảng cách từ M ñến mặt phẳng (SBC). Bài 7. Cho chóp ñều SABC, ñáy ABC có cạnh a, mặt bên tạo với ñáy 1 góc α (00 < α < 900 ) . Tính khoảng cách từ A ñến mặt phẳng (SBC). Giáo viên: Lê Bá Trần Phương Nguồn : Hocmai.vn Hocmai.vn – Ngôi trường chung của học trò Việt Tổng ñài tư vấn: 1900 58-58-12 - Trang | 1 -
Nội dung trích xuất từ tài liệu:
Luyện thi Đại học Kit 1 - Môn Toán: Các vấn đề về khoảng cách (Bài tập tự luyện)Khóa học LTðH KIT-1: Môn Toán (Thầy Lê Bá Trần Phương) Các vấn ñề về khoảng cách CÁC VẤN ðỀ VỀ KHOẢNG CÁCH (KHOẢNG CÁCH TỪ 1 ðIỂM ðẾN 1 MẶT PHẲNG) BÀI TẬP TỰ LUYỆN Giáo viên: LÊ BÁ TRẦN PHƯƠNG Các bài tập trong tài liệu này ñược biên soạn kèm theo bài giảng Các vấn ñề về khoảng cách (Phần 01+02+03) thuộc khóa học Luyện thi ñại học KIT-1: Môn Toán (Thầy Lê Bá Trần Phương) tại website Hocmai.vn ñể giúp các Bạn kiểm tra, củng cố lại các kiến thức ñược giáo viên truyền ñạt trong bài giảng Các vấn ñề về khoảng cách. ðể sử dụng hiệu quả, Bạn cần học trước Bài giảng sau ñó làm ñầy ñủ các bài tập trong tài liệu này. (Tài liệu dùng chung bài 07+08+09) Bài 1. Cho hình chóp S.ABCD ñáy ABCD là hình vuông cạnh a, ( SAB ) ⊥ ( ABCD) , SA = SB, góc giữa 0 SC và (ABCD) bằng 45 . Tính khoảng cách từ B ñến mặt phẳng (SCD). Bài 2. Cho chóp S.ABCD có ñáy ABCD là hình vuông cạnh a, SA ⊥ ( ACBD ) , góc giữa mặt bên (SBC) và mặt ñáy (ABCD) bằng 600, G là trọng tâm tam giác SAD. Tính khoảng cách từ G ñến mặt phẳng (SBC). Bài 3. Cho hình chóp S.ABC có ñáy ABC là tam giác vuông cân tại A, AB = a 2 , I là trung ñiểm của BC, hình chiếu vuông góc của S lên mặt phẳng (ABC) là ñiểm H thỏa mãn I nằm giữa AH. Tính khoảng cách từ trung ñiểm K của SB tới mặt phẳng (SAH). Bài 4. Cho hình chóp S.ABC có ñáy ABC là tam giác ñều cạnh a, I là trung ñiểm của BC, D là ñiểm ñối a xứng với A qua I, SD ⊥ ( ABC ) , K là hình chiếu vuông góc của I trên SA, IK = . Tính khoảng cách từ 2 D ñến mặt phẳng (SBC). Bài 5. Cho chóp S.ABCD ñáy ABCD là hình vuông cạnh a, tam giác SAB ñều, tam giác SCD vuông cân tại S. H là hình chiếu vuông góc của S lên mặt phẳng (ABCD). Tính khoảng cách từ H ñến mặt phẳng (SCD). Bài 6. Cho hình chóp S.ABCD ñáy ABCD là hình thang vuông tại A và D, SA ⊥ ( ABCD ) , SA = a 2 , AB = 2a; AD = DC = a. Gọi M là trung ñiểm của SD. Tính khoảng cách từ M ñến mặt phẳng (SBC). Bài 7. Cho chóp ñều SABC, ñáy ABC có cạnh a, mặt bên tạo với ñáy 1 góc α (00 < α < 900 ) . Tính khoảng cách từ A ñến mặt phẳng (SBC). Giáo viên: Lê Bá Trần Phương Nguồn : Hocmai.vn Hocmai.vn – Ngôi trường chung của học trò Việt Tổng ñài tư vấn: 1900 58-58-12 - Trang | 1 -
Tìm kiếm theo từ khóa liên quan:
Luyện thi đại học môn Toán Ôn tập môn Toán 12 Các vấn đề về khoảng cách Hình học không gian Bài tập Toán 12 Ôn tập Toán hình họcGợi ý tài liệu liên quan:
-
Luận Văn: Ứng Dụng Phương Pháp Tọa Độ Giải Một Số Bài Toán Hình Học Không Gian Về Góc và Khoảng Cách
37 trang 100 0 0 -
Những suy luận có lý Toán học: Phần 1
126 trang 86 0 0 -
Chuyên đề vận dụng cao môn Toán Hình học 12
299 trang 43 0 0 -
150 đề thi thử đại học môn Toán
155 trang 38 0 0 -
Đề thi thử THPT Quốc gia năm 2017 môn Toán lần 2 - Trường THPT Lương Ngọc Quyến - Mã đề 032
7 trang 34 0 0 -
600 câu trắc nghiệm vận dụng OXYZ có đáp án
71 trang 34 0 0 -
Đề thi thử THPT Quốc gia năm 2017 môn Toán lần 2 - Trường THPT Lương Ngọc Quyến - Mã đề 016
6 trang 32 0 0 -
Đề thi thử THPT Quốc gia năm 2017 môn Toán lần 2 - Trường THPT Lương Ngọc Quyến - Mã đề 004
7 trang 31 0 0 -
Đề thi thử THPT Quốc gia năm 2017 môn Toán lần 2 - Trường THPT Lương Ngọc Quyến - Mã đề 006
7 trang 31 0 0 -
Đề thi thử THPT Quốc gia năm 2017 môn Toán lần 2 - Trường THPT Lương Ngọc Quyến - Mã đề 014
7 trang 30 0 0