Luyện thi Đại học Kit 1 - Môn Toán: Các vấn đề về khoảng cách Phần 05 (Tài liệu bài giảng)
Số trang: 1
Loại file: pdf
Dung lượng: 144.78 KB
Lượt xem: 6
Lượt tải: 0
Xem trước 1 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Luyện thi Đại học Kit 1 - Môn Toán: Các vấn đề về khoảng cách Phần 05 (Tài liệu bài giảng) là tài liệu tóm lược các kiến thức đi kèm với bài giảng Các vấn đề về khoảng cách (Phần 01) thuộc khóa học Luyện thi Đại học Kit 1 - Môn Toán (Thầy Lê Bá Trần Phương) nhằm giúp bạn kiểm tra, củng cố lại kiến thức được giáo viên truyền đạt trong bài giảng Các vấn đề về khoảng cách.
Nội dung trích xuất từ tài liệu:
Luyện thi Đại học Kit 1 - Môn Toán: Các vấn đề về khoảng cách Phần 05 (Tài liệu bài giảng)Khóa học LTðH KIT-1: Môn Toán (Thầy Lê Bá Trần Phương) Các vấn ñề về khoảng cách CÁC VẤN ðỀ VỀ KHOẢNG CÁCH (Phần 05) TÀI LIỆU BÀI GIẢNG Giáo viên: LÊ BÁ TRẦN PHƯƠNG ðây là tài liệu tóm lược các kiến thức ñi kèm với bài giảng Các vấn ñề về khoảng cách (Phần 05) thuộc khóa học Luyện thi ñại học KIT-1: Môn Toán (Thầy Lê Bá Trần Phương) tại website Hocmai.vn. ðể có thể nắm vững kiến thức phần Các vấn ñề về khoảng cách (Phần 05), Bạn cần kết hợp xem tài liệu cùng với bài giảng này. 1. ðịnh nghĩa ñoạn vuông góc chung d M MN ⊥ d MN là ñoạn vuông góc chung của d và d’ ⇔ MN ⊥ d M ∈ d ; N ∈ d N 2. ðịnh nghĩa khoảng cách giữa hai ñường thẳng chéo nhau d Khoảng cách giữa 2 ñường thẳng chéo nhau d và d’ (kí hiệu d(d;d’)) chính là ñộ dài ñoạn vuông góc chung. 3. Cách tính khoảng cách giữa hai ñường thẳng chéo nhau d và d’ Cách 1: Tính ñộ dài ñoạn vuông góc chung A d Cách 2: Tìm (P) chứa d và song song d’ h d P Khi ñó d(d;d’) = d(d;(P))=d(A;(P)) với ñiểm A bất kì thuộc d Chú ý: ñiều kiện ñể ñường thẳng song song với mặt phẳng khi ñường thẳng ñó song song với 1 ñường thẳng thuộc mặt phẳng. Bài 1 (Trích ðHKA-2010) Cho chóp S.ABCD có ñáy ABCD là hình vuông cạnh a. M, N là trung ñiểm của AB và AD, H là giao ñiểm của CN và DM, SH vuông góc mặt phẳng (ABCD), SH = a 3 . Tính khoảng cách giữa hai ñường thẳng chéo nhau DM và SC. Bài 2 (Trích ðHKB-2007) Cho tứ giác ñều S.ABCD có ñáy ABCD là hình vuông cạnh a, E ñối xứng với D qua trung ñiểm SA, M là trung ñiểm của AE, N là trung ñiểm của BC. Chứng minh rằng MN vuông góc BD và tính khoảng cách giữa MN và AC. Bài 3. Cho tứ diện ABCD có AB = a, tất cả các cạnh còn lại bằng 3a. Tính khoảng cách giữa hai ñường thẳng AB và CD. Bài 4. Cho chóp tứ giác ñều S.ABCD có ñáy ABCD là hình vuông cạnh a, cạnh bên bằng a 2 . Tính khoảng cách giữa AD và SB. Giáo viên: Lê Bá Trần Phương Nguồn: Hocmai.vn Hocmai.vn – Ngôi trường chung của học trò Việt Tổng ñài tư vấn: 1900 58-58-12 - Trang | 1 -
Nội dung trích xuất từ tài liệu:
Luyện thi Đại học Kit 1 - Môn Toán: Các vấn đề về khoảng cách Phần 05 (Tài liệu bài giảng)Khóa học LTðH KIT-1: Môn Toán (Thầy Lê Bá Trần Phương) Các vấn ñề về khoảng cách CÁC VẤN ðỀ VỀ KHOẢNG CÁCH (Phần 05) TÀI LIỆU BÀI GIẢNG Giáo viên: LÊ BÁ TRẦN PHƯƠNG ðây là tài liệu tóm lược các kiến thức ñi kèm với bài giảng Các vấn ñề về khoảng cách (Phần 05) thuộc khóa học Luyện thi ñại học KIT-1: Môn Toán (Thầy Lê Bá Trần Phương) tại website Hocmai.vn. ðể có thể nắm vững kiến thức phần Các vấn ñề về khoảng cách (Phần 05), Bạn cần kết hợp xem tài liệu cùng với bài giảng này. 1. ðịnh nghĩa ñoạn vuông góc chung d M MN ⊥ d MN là ñoạn vuông góc chung của d và d’ ⇔ MN ⊥ d M ∈ d ; N ∈ d N 2. ðịnh nghĩa khoảng cách giữa hai ñường thẳng chéo nhau d Khoảng cách giữa 2 ñường thẳng chéo nhau d và d’ (kí hiệu d(d;d’)) chính là ñộ dài ñoạn vuông góc chung. 3. Cách tính khoảng cách giữa hai ñường thẳng chéo nhau d và d’ Cách 1: Tính ñộ dài ñoạn vuông góc chung A d Cách 2: Tìm (P) chứa d và song song d’ h d P Khi ñó d(d;d’) = d(d;(P))=d(A;(P)) với ñiểm A bất kì thuộc d Chú ý: ñiều kiện ñể ñường thẳng song song với mặt phẳng khi ñường thẳng ñó song song với 1 ñường thẳng thuộc mặt phẳng. Bài 1 (Trích ðHKA-2010) Cho chóp S.ABCD có ñáy ABCD là hình vuông cạnh a. M, N là trung ñiểm của AB và AD, H là giao ñiểm của CN và DM, SH vuông góc mặt phẳng (ABCD), SH = a 3 . Tính khoảng cách giữa hai ñường thẳng chéo nhau DM và SC. Bài 2 (Trích ðHKB-2007) Cho tứ giác ñều S.ABCD có ñáy ABCD là hình vuông cạnh a, E ñối xứng với D qua trung ñiểm SA, M là trung ñiểm của AE, N là trung ñiểm của BC. Chứng minh rằng MN vuông góc BD và tính khoảng cách giữa MN và AC. Bài 3. Cho tứ diện ABCD có AB = a, tất cả các cạnh còn lại bằng 3a. Tính khoảng cách giữa hai ñường thẳng AB và CD. Bài 4. Cho chóp tứ giác ñều S.ABCD có ñáy ABCD là hình vuông cạnh a, cạnh bên bằng a 2 . Tính khoảng cách giữa AD và SB. Giáo viên: Lê Bá Trần Phương Nguồn: Hocmai.vn Hocmai.vn – Ngôi trường chung của học trò Việt Tổng ñài tư vấn: 1900 58-58-12 - Trang | 1 -
Tìm kiếm theo từ khóa liên quan:
Luyện thi đại học môn Toán Ôn tập môn Toán 12 Các vấn đề về khoảng cách Hình học không gian Bài tập Toán 12 Bài giảng Khoảng cáchGợi ý tài liệu liên quan:
-
Luận Văn: Ứng Dụng Phương Pháp Tọa Độ Giải Một Số Bài Toán Hình Học Không Gian Về Góc và Khoảng Cách
37 trang 114 0 0 -
Những suy luận có lý Toán học: Phần 1
126 trang 90 0 0 -
Chuyên đề vận dụng cao môn Toán Hình học 12
299 trang 51 0 0 -
150 đề thi thử đại học môn Toán
155 trang 49 0 0 -
Đề thi thử THPT Quốc gia năm 2017 môn Toán lần 2 - Trường THPT Lương Ngọc Quyến - Mã đề 032
7 trang 38 0 0 -
600 câu trắc nghiệm vận dụng OXYZ có đáp án
71 trang 38 0 0 -
Đề thi thử THPT Quốc gia năm 2017 môn Toán lần 2 - Trường THPT Lương Ngọc Quyến - Mã đề 016
6 trang 36 0 0 -
Đề thi thử THPT Quốc gia năm 2017 môn Toán lần 2 - Trường THPT Lương Ngọc Quyến - Mã đề 006
7 trang 36 0 0 -
9 trang 36 0 0
-
Đề thi thử THPT Quốc gia năm 2017 môn Toán lần 2 - Trường THPT Lương Ngọc Quyến - Mã đề 004
7 trang 35 0 0