Luyện thi Đại học Kit 1 - Môn Toán: Dùng đồ thị biện luận số nghiệm của phương trình (Đáp án bài tập tự luyện)
Số trang: 1
Loại file: pdf
Dung lượng: 304.49 KB
Lượt xem: 9
Lượt tải: 0
Xem trước 1 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Luyện thi Đại học Kit 1 - Môn Toán: Dùng đồ thị biện luận số nghiệm của phương trình (Đáp án bài tập tự luyện) của thầy Lê Bá Trần Phương giúp các bạn nắm vững những kiến thức về dùng đồ thị biện luận số nghiệm của phương trình. Mời các bạn tham khảo!
Nội dung trích xuất từ tài liệu:
Luyện thi Đại học Kit 1 - Môn Toán: Dùng đồ thị biện luận số nghiệm của phương trình (Đáp án bài tập tự luyện)Khóa học LTðH KIT-1: Môn Toán (Thầy Lê Bá Trần Phương) Dùng ñồ thị biện luận số nghiệm của phương trình DÙNG ðỒ THỊ BIỆN LUẬN SỐ NGHIỆM CỦA PHƯƠNG TRÌNH ðÁP ÁN BÀI TẬP TỰ LUYỆN Giáo viên: LÊ BÁ TRẦN PHƯƠNG Các bài tập trong tài liệu này ñược biên soạn kèm theo bài giảng Dùng ñồ thị biện luận số nghiệm của phương trình thuộc khóa học Luyện thi ñại học KIT-1: Môn Toán (Thầy Lê Bá Trần Phương) tại website Hocmai.vn ñể giúp các Bạn kiểm tra, củng cố lại các kiến thức ñược giáo viên truyền ñạt trong bài giảng Dùng ñồ thị biện luận số nghiệm của phương trình. ðể sử dụng hiệu quả, Bạn cần học trước Bài giảng sau ñó làm ñầy ñủ các bài tập trong tài liệu này. 1 3 3 2 Bài 1: Cho hàm số: y = x − x +5 4 2 a. Khảo sát và vẽ ñồ thị (C) của hàm số ñã cho. b. Tìm m ñể phương trình: x3 − 6 x 2 + m = 0 có 3 nghiệm thực phân biệt. Giải: a. Các em tự khảo sát 1 3 3 2 m b. Ta có: x3 − 6 x 2 + m = 0 ⇔ x − x +5 =5− 4 2 4 m Do ñó ñể phương trình ñã cho có 3 nghiệm phân biệt thì ñường thẳng y = 5 − phải cắt ñồ thị (C) tại 3 4 m ñiểm phân biệt ⇔ −3 < 5 − < 5 ⇔ 0 < m < 32 . 4 Bài 2: Cho hàm số: y = − x 3 + 3 x 2 − 2 a. Khảo sát và vẽ ñồ thị (C) của hàm số ñã cho. b. Tìm m ñể phương trình: x3 − 3 x 2 − log 1 m = 0 có 3 nghiệm phân biệt, trong ñó có 2 nghiệm nhỏ hơn 1. 2 Giải: a. Các em tự khảo sát Hocmai.vn – Ngôi trường chung của học trò Việt Tổng ñài tư vấn: 1900 58-58-12 - Trang | 1 -Khóa học LTðH KIT-1: Môn Toán (Thầy Lê Bá Trần Phương) Dùng ñồ thị biện luận số nghiệm của phương trình b. Ta có: x3 − 3 x 2 − log 1 m = 0 (m > 0) 2 ðặt log 2 m − 2 = M , M ∈ ( −∞; +∞) ⇒ (*) ⇔ − x3 + 3 x 2 − 2 = M Do ñó ñể phương trình ñã cho có 3 nghiệm phân biệt, trong ñó có 2 nghiệm nhỏ hơn 1 thì 2 ñồ thị: y = − x 3 + 3 x 2 − 2 (C ) phải cắt nhau tại 3 ñiểm phân biệt, trong ñó có hoành ñộ nhỏ hơn 1 y = M , M ∈ (−∞; +∞) ⇔ −2 < M < 0 ⇔ −2 < log 2 m − 2 < 0 ⇔ 0 < log 2 m < 2 ⇔ 1 < m < 4 ðáp số: 1 < m < 4 Bài 3: Cho hàm số: y = x3 − 3 x (1) a. Khảo sát và vẽ ñồ thị hàm số (1) 2m b. Tìm m ñể phương trình: x3 − 3 x = có 3 nghiệm phân biệt. m2 + 1 Giải: a. Các em tự khảo sát 2m b. ðặt = M , −1 ≤ M ≤ 1 m2 + 1 −2m 2 + 2 vì coi M là hàm số biến m, khi ñó ta có M = ; M = 0 ⇔ m = ±1 (m 2 + 1)2 Bảng biến thiên : m -∞ -1 1 +∞ M’ - 0 + 0 - M 0 1 -1 0 Từ bảng biến thiên suy ra −1 ≤ M ≤ 1 Khi ñó phương trình ñã cho ⇔ x 3 − 3 x = M , M ∈ [ −1;1] Số nghiệm của phương trình này ñúng bằng số nghiệm của 2 ñồ thị: y = x3 − 3 x (C ) và y = M với M ∈ [ −1;1] . Do ñó ñể phương trình ñã cho có 3 nghiệm phân biệt thì 2 ñồ thị: y = x − 3 x (1) 3 phải cắt nhau tại 3 ñiểm phân biệt. y = M ( M ∈ [ −1;1]) 2m ⇔ −1 ≤ M ≤ 1 ⇔ −1 ≤ ≤1 m2 + 1 Hocmai.vn – Ngôi trường chung của học trò Việt Tổng ñài tư vấn: 1900 58-58-12 - Trang | 2 -Khóa học LTðH KIT-1: Môn Toán (Thầy Lê Bá Trần Phương) Dùng ñồ thị biện luận số nghiệm của phương trình m + 2m + 1 ≥ 0 (m + 1) ≥ 0 2 2 ⇔ − m 2 − 1 ≤ 2m ≤ m 2 + 1 ⇔ 2 ⇔ ∀m m − 2m ...
Nội dung trích xuất từ tài liệu:
Luyện thi Đại học Kit 1 - Môn Toán: Dùng đồ thị biện luận số nghiệm của phương trình (Đáp án bài tập tự luyện)Khóa học LTðH KIT-1: Môn Toán (Thầy Lê Bá Trần Phương) Dùng ñồ thị biện luận số nghiệm của phương trình DÙNG ðỒ THỊ BIỆN LUẬN SỐ NGHIỆM CỦA PHƯƠNG TRÌNH ðÁP ÁN BÀI TẬP TỰ LUYỆN Giáo viên: LÊ BÁ TRẦN PHƯƠNG Các bài tập trong tài liệu này ñược biên soạn kèm theo bài giảng Dùng ñồ thị biện luận số nghiệm của phương trình thuộc khóa học Luyện thi ñại học KIT-1: Môn Toán (Thầy Lê Bá Trần Phương) tại website Hocmai.vn ñể giúp các Bạn kiểm tra, củng cố lại các kiến thức ñược giáo viên truyền ñạt trong bài giảng Dùng ñồ thị biện luận số nghiệm của phương trình. ðể sử dụng hiệu quả, Bạn cần học trước Bài giảng sau ñó làm ñầy ñủ các bài tập trong tài liệu này. 1 3 3 2 Bài 1: Cho hàm số: y = x − x +5 4 2 a. Khảo sát và vẽ ñồ thị (C) của hàm số ñã cho. b. Tìm m ñể phương trình: x3 − 6 x 2 + m = 0 có 3 nghiệm thực phân biệt. Giải: a. Các em tự khảo sát 1 3 3 2 m b. Ta có: x3 − 6 x 2 + m = 0 ⇔ x − x +5 =5− 4 2 4 m Do ñó ñể phương trình ñã cho có 3 nghiệm phân biệt thì ñường thẳng y = 5 − phải cắt ñồ thị (C) tại 3 4 m ñiểm phân biệt ⇔ −3 < 5 − < 5 ⇔ 0 < m < 32 . 4 Bài 2: Cho hàm số: y = − x 3 + 3 x 2 − 2 a. Khảo sát và vẽ ñồ thị (C) của hàm số ñã cho. b. Tìm m ñể phương trình: x3 − 3 x 2 − log 1 m = 0 có 3 nghiệm phân biệt, trong ñó có 2 nghiệm nhỏ hơn 1. 2 Giải: a. Các em tự khảo sát Hocmai.vn – Ngôi trường chung của học trò Việt Tổng ñài tư vấn: 1900 58-58-12 - Trang | 1 -Khóa học LTðH KIT-1: Môn Toán (Thầy Lê Bá Trần Phương) Dùng ñồ thị biện luận số nghiệm của phương trình b. Ta có: x3 − 3 x 2 − log 1 m = 0 (m > 0) 2 ðặt log 2 m − 2 = M , M ∈ ( −∞; +∞) ⇒ (*) ⇔ − x3 + 3 x 2 − 2 = M Do ñó ñể phương trình ñã cho có 3 nghiệm phân biệt, trong ñó có 2 nghiệm nhỏ hơn 1 thì 2 ñồ thị: y = − x 3 + 3 x 2 − 2 (C ) phải cắt nhau tại 3 ñiểm phân biệt, trong ñó có hoành ñộ nhỏ hơn 1 y = M , M ∈ (−∞; +∞) ⇔ −2 < M < 0 ⇔ −2 < log 2 m − 2 < 0 ⇔ 0 < log 2 m < 2 ⇔ 1 < m < 4 ðáp số: 1 < m < 4 Bài 3: Cho hàm số: y = x3 − 3 x (1) a. Khảo sát và vẽ ñồ thị hàm số (1) 2m b. Tìm m ñể phương trình: x3 − 3 x = có 3 nghiệm phân biệt. m2 + 1 Giải: a. Các em tự khảo sát 2m b. ðặt = M , −1 ≤ M ≤ 1 m2 + 1 −2m 2 + 2 vì coi M là hàm số biến m, khi ñó ta có M = ; M = 0 ⇔ m = ±1 (m 2 + 1)2 Bảng biến thiên : m -∞ -1 1 +∞ M’ - 0 + 0 - M 0 1 -1 0 Từ bảng biến thiên suy ra −1 ≤ M ≤ 1 Khi ñó phương trình ñã cho ⇔ x 3 − 3 x = M , M ∈ [ −1;1] Số nghiệm của phương trình này ñúng bằng số nghiệm của 2 ñồ thị: y = x3 − 3 x (C ) và y = M với M ∈ [ −1;1] . Do ñó ñể phương trình ñã cho có 3 nghiệm phân biệt thì 2 ñồ thị: y = x − 3 x (1) 3 phải cắt nhau tại 3 ñiểm phân biệt. y = M ( M ∈ [ −1;1]) 2m ⇔ −1 ≤ M ≤ 1 ⇔ −1 ≤ ≤1 m2 + 1 Hocmai.vn – Ngôi trường chung của học trò Việt Tổng ñài tư vấn: 1900 58-58-12 - Trang | 2 -Khóa học LTðH KIT-1: Môn Toán (Thầy Lê Bá Trần Phương) Dùng ñồ thị biện luận số nghiệm của phương trình m + 2m + 1 ≥ 0 (m + 1) ≥ 0 2 2 ⇔ − m 2 − 1 ≤ 2m ≤ m 2 + 1 ⇔ 2 ⇔ ∀m m − 2m ...
Tìm kiếm theo từ khóa liên quan:
Luyện thi đại học môn Toán Ôn tập môn Toán 12 Biện luận nghiệm phương trình Giải hệ phương trình Bài tập Toán 12 Bài tập giải phương trìnhGợi ý tài liệu liên quan:
-
23 trang 205 0 0
-
Bộ đề thi học sinh giỏi cấp tỉnh môn Toán lớp 9
263 trang 157 0 0 -
Đề ôn thi Đại học môn Toán - Trần Sĩ Tùng - Đề số 16
1 trang 102 0 0 -
Đề thi học sinh giỏi cấp tỉnh môn Toán THPT năm 2023-2024 có đáp án (Đợt 1) - Sở GD&ĐT Quảng Nam
11 trang 62 0 0 -
Đề thi học kì 2 môn Toán lớp 9 năm 2023-2024 có đáp án - Trường THCS Trưng Vương, Hà Nội
3 trang 49 0 0 -
150 đề thi thử đại học môn Toán
155 trang 38 0 0 -
Đề thi giữa học kì 2 môn Toán lớp 9 năm 2022-2023 có đáp án - Trường THCS Phan Bội Châu, Hiệp Đức
10 trang 35 0 0 -
Đề thi thử THPT Quốc gia năm 2017 môn Toán lần 2 - Trường THPT Lương Ngọc Quyến - Mã đề 032
7 trang 34 0 0 -
20 trang 33 0 0
-
Đề cương giữa học kì 1 môn Toán lớp 12 năm 2023-2024 - Trường THPT Bắc Thăng Long
21 trang 33 0 0