Danh mục

Luyện thi Đại học Kit 1 - Môn Toán: Lý thuyết cơ sở về mặt phẳng tiếp theo (Bài tập tự luyện)

Số trang: 2      Loại file: pdf      Dung lượng: 239.34 KB      Lượt xem: 8      Lượt tải: 0    
10.10.2023

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Luyện thi Đại học Kit 1 - Môn Toán: Lý thuyết cơ sở về mặt phẳng tiếp theo (Bài tập tự luyện) của thầy Lê Bá Trần Phương giúp các bạn nắm vững những kiến thức về hình học giải tích trong không gian. Mời các bạn tham khảo!
Nội dung trích xuất từ tài liệu:
Luyện thi Đại học Kit 1 - Môn Toán: Lý thuyết cơ sở về mặt phẳng tiếp theo (Bài tập tự luyện)Khóa học LTĐH môn Toán - Thầy Lê Bá Trần Phương Hình học giải tích trong không gian LÝ THUYẾT CƠ SỞ VỀ MẶT PHẲNG (tiếp theo) BÀI TẬP TỰ LUYỆN Giáo viên: LÊ BÁ TRẦN PHƢƠNG Bài tập có hướng dẫn giải: Bài 1. Trong không gian với hệ tọa độ Oxyz cho điểm M(5;2; - 3) và mặt phẳng (P): 2 x  2 y  z  1  0 . a. Gọi M1 là hình chiếu của M lên mặt phẳng ( P ). Xác định tọa độ điểm M1 và tính độ dài đọan MM1. x-1 y-1 z-5 b. Viết phương trình mặt phẳng ( Q ) đi qua M và chứa đường thẳng :   2 1 -6 Bài 2. Trong không gian với hệ tọa độ Oxyz cho 3 hình lập phương ABCD.A1B1C1D1 với A(0;0;0), B(2; 0; 0), D1(0; 2; 2) a. Xác định tọa độ các điểm còn lại của hình lập phương ABCD.A1B1C1D1. Gọi M là trung điểm của BC . Chứng minh rằng hai mặt phẳng ( AB1D1) và ( AMB1) vuông góc nhau. b. Chứng minh rằng tỉ số khoảng cách từ điểm N thuộc đường thẳng AC1 ( N ≠ A ) tới 2 mặt phẳng ( AB1D1) và ( AMB1) không phụ thuộc vào vị trí của điểm N. Bài 3. Viết phương trình mặt phẳng (P) đi qua M(3;-1;-5) và vuông góc với 2 mặt phẳng ( P ) : 3x  2 y  2 z  7; ( P2 ) : 5 x  4 y  3z  1 . 1 x 1 y z  2 Bài 4. Cho điểm A  2;5;3 và đường thẳng d :   . Viết phương trình mặt phẳng   chứa 2 1 2 d sao cho khoảng cách từ A đến   lớn nhất. Bài 5. Trong không gian Oxyz, cho các điểm A(1;0;0); B(0;2;0); C(0;0;-2) tìm tọa độ điểm O’ đối xứng với O qua (ABC). Bài 6. Trong không gian với hệ tọa độ Oxyz, hãy xác định toạ độ tâm và bán kính đường tròn ngoại tiếp tam giác ABC, biết A(-1; 0; 1), B(1; 2; -1), C(-1; 2; 3). Bài tập tự giải : Bài 1. Lập phương trình mp () đi qua hai điểm A(2 ; 1 ; 0), B(5 ; 1; 1) và khoảng cách từ điểm  1 7 M  0; 0;  đến mp() bằng .  2 6 3 Bài 2. Trong không gian với hệ tọa độ Oxyz , cho hình lập phương ABCD.A’B’C’D’ biết A(0;0;0), B(1;0;0), D(0;1;0), A’(0;0;1). Lập phương trình mp() chứa đường thẳng CD’ và tạo với mp(BB’D’D) một góc nhỏ nhất. Bài 3. Trong không gian với hệ tọa độ Oxyz cho hình hộp chữ nhật ABCD.A’B’C’D’ có A trung với gốc tọa độ, B(a ; 0 ; 0), D(0 ; a ; 0), A’(0 ; 0 ; b) với a, b > 0. Gọi M là trung điểm cạnh CC’. Tính thể tích khối a tứ diện BDA’M theo a và b và xác định tỉ số để hai mặt phẳng (A’BD) và (MBD) vuông góc với nhau. b Bài 4. Trong không gian với hệ tọa độ Oxyz , cho điểm A(0 ; 1 ; 2) và hai đường thẳng : Hocmai.vn – Ngôi trường chung của học trò Việt Tổng đài tư vấn: 1900 58-58-12 - Trang | 1 -Khóa học LTĐH môn Toán - Thầy Lê Bá Trần Phương Hình học giải tích trong không gian x  1 t x y 1 z  1  d1:   d2:  y  1  2t 2 1 1 z  2  t  Viết phương trình mặt phẳng (P) qua A, đồng thời song song với d1 và d2. Tìm tọa độ các điểm M trên d1, N trên d2 sao cho 3 điểm A, M, N thẳng hàng. Bài 5. Trong không gian với hệ tọa độ Oxyz cho 3 điểm A(1 ; 0 ; 1), B(1 ; 2 ; 1), C(0 ; 2 ; 0). Gọi G là trọng tâm tam giác ABC. a. Viết phương trình đường thẳng OG. b. Viết phương trình mặt cầu (S) đi qua 4 điểm O, A, B, C. c. Viết phương trình các mp vuông góc với đường thẳng OG và tiếp xúc với mặt cầu (S). Giáo viên: Lê Bá Trần Phương Nguồn: Hocmai.vn Hocmai.vn – Ngôi trường chung của học trò Việt Tổng đài tư vấn: 1900 58-58-12 - Trang | 2 -

Tài liệu được xem nhiều: