Luyện thi Đại học Kit 1 - Môn Toán: Lý thuyết cơ sở về phương trình đường thẳng_P2 (Bài tập tự luyện)
Số trang: 2
Loại file: pdf
Dung lượng: 223.26 KB
Lượt xem: 8
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Luyện thi Đại học Kit 1 - Môn Toán: Lý thuyết cơ sở về phương trình đường thẳng_P2 (Bài tập tự luyện) của thầy Lê Bá Trần Phương giúp các bạn nắm vững những kiến thức về hình học giải tích trong không gian. Mời các bạn tham khảo!
Nội dung trích xuất từ tài liệu:
Luyện thi Đại học Kit 1 - Môn Toán: Lý thuyết cơ sở về phương trình đường thẳng_P2 (Bài tập tự luyện)Khóa học LTĐH môn Toán - Thầy Lê Bá Trần Phương Hình học giải tích trong không gian LÝ THUYẾT CƠ SỞ VỀ PHƢƠNG TRÌNH ĐƢỜNG THẲNG (Phần 2) BÀI TẬP TỰ LUYỆN Giáo viên: LÊ BÁ TRẦN PHƢƠNG Bài tập có hướng dẫn giải: Bài 1. Trong không gian toạ độ Oxyz, cho mặt phẳng (P): 2x – y – 5z + 1 = 0 và hai đường thẳng: x 1 y 1 z 2 x2 y2 z d1: , d2: 2 3 1 1 5 2 Viết phương trình đường thẳng d vuông góc với (P) đồng thời cắt hai đường thẳng d1 và d2. x 3 y 2 z 1 Bài 2. Trong không gian toạ độ cho đường thẳng d: và mặt phẳng : 2 1 1 (P): x + y + z + 2 = 0. Gọi M là giao điểm của d và (P). Viết phương trình đường thẳng nằm trong mặt phẳng (P), vuông góc với d đồng thời thoả mãn khoảng cách từ M tới bằng 42 . x2 y2 z Bài 3. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng : và mặt phẳng : 1 1 1 (P): x + 2y – 3z + 4 = 0. Viết phương trình đường thẳng d nằm trong (P) sao cho d cắt và vuông góc với đường thẳng . Bài 4. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng x 1 y 1 z 1 x 1 y 2 z 1 d1: ; d2 : và mặt phẳng (P): x - y - 2z + 3 = 0. Viết phương trình 2 1 1 1 1 2 chính tắc của đường thẳng , biết nằm trên mặt phẳng (P) và cắt hai đường thẳng d1 , d2 . Bài tập tự luyện: Bài 1. a. Xác định giao điểm G của 3 mp : (): 2x – y + z – 6 = 0 ; (): x = 4y – 2z – 8 = 0 ; (): y = 0. b. Hãy viết ptts, chính tắc của đường thẳng đi qua giao điểm G nằm trong mp() và vuông góc với giao tuyến của hai mp(), (). Bài 2. Trong hệ tọa độ trực chuẩn Oxyz, cho tam giác ABC có M 1 ; 5 ;3 là trung điểm của AC , 2 2 x 1 t1 x 4 4t2 phương trình các đường thẳng chứa các cạnh AB, BC lần lượt là y 3 và y 3 t2 z 5 t z 2 t 1 2 Viết phương trình đường thẳng chứa phân giác trong của góc A. Hocmai.vn – Ngôi trường chung của học trò Việt Tổng đài tư vấn: 1900 58-58-12 - Trang | 1 -Khóa học LTĐH môn Toán - Thầy Lê Bá Trần Phương Hình học giải tích trong không gian Bài 3. Viết phương trình đường thẳng () đi qua điểm M(2; 3; 1) 3x y z 1 0 x 3 y 2 z 3 cắt (1): và vuông góc với (2): 2 x 2 y 3z 6 0 1 1 2 Giáo viên: Lê Bá Trần Phương Nguồn: Hocmai.vn Hocmai.vn – Ngôi trường chung của học trò Việt Tổng đài tư vấn: 1900 58-58-12 - Trang | 2 -
Nội dung trích xuất từ tài liệu:
Luyện thi Đại học Kit 1 - Môn Toán: Lý thuyết cơ sở về phương trình đường thẳng_P2 (Bài tập tự luyện)Khóa học LTĐH môn Toán - Thầy Lê Bá Trần Phương Hình học giải tích trong không gian LÝ THUYẾT CƠ SỞ VỀ PHƢƠNG TRÌNH ĐƢỜNG THẲNG (Phần 2) BÀI TẬP TỰ LUYỆN Giáo viên: LÊ BÁ TRẦN PHƢƠNG Bài tập có hướng dẫn giải: Bài 1. Trong không gian toạ độ Oxyz, cho mặt phẳng (P): 2x – y – 5z + 1 = 0 và hai đường thẳng: x 1 y 1 z 2 x2 y2 z d1: , d2: 2 3 1 1 5 2 Viết phương trình đường thẳng d vuông góc với (P) đồng thời cắt hai đường thẳng d1 và d2. x 3 y 2 z 1 Bài 2. Trong không gian toạ độ cho đường thẳng d: và mặt phẳng : 2 1 1 (P): x + y + z + 2 = 0. Gọi M là giao điểm của d và (P). Viết phương trình đường thẳng nằm trong mặt phẳng (P), vuông góc với d đồng thời thoả mãn khoảng cách từ M tới bằng 42 . x2 y2 z Bài 3. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng : và mặt phẳng : 1 1 1 (P): x + 2y – 3z + 4 = 0. Viết phương trình đường thẳng d nằm trong (P) sao cho d cắt và vuông góc với đường thẳng . Bài 4. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng x 1 y 1 z 1 x 1 y 2 z 1 d1: ; d2 : và mặt phẳng (P): x - y - 2z + 3 = 0. Viết phương trình 2 1 1 1 1 2 chính tắc của đường thẳng , biết nằm trên mặt phẳng (P) và cắt hai đường thẳng d1 , d2 . Bài tập tự luyện: Bài 1. a. Xác định giao điểm G của 3 mp : (): 2x – y + z – 6 = 0 ; (): x = 4y – 2z – 8 = 0 ; (): y = 0. b. Hãy viết ptts, chính tắc của đường thẳng đi qua giao điểm G nằm trong mp() và vuông góc với giao tuyến của hai mp(), (). Bài 2. Trong hệ tọa độ trực chuẩn Oxyz, cho tam giác ABC có M 1 ; 5 ;3 là trung điểm của AC , 2 2 x 1 t1 x 4 4t2 phương trình các đường thẳng chứa các cạnh AB, BC lần lượt là y 3 và y 3 t2 z 5 t z 2 t 1 2 Viết phương trình đường thẳng chứa phân giác trong của góc A. Hocmai.vn – Ngôi trường chung của học trò Việt Tổng đài tư vấn: 1900 58-58-12 - Trang | 1 -Khóa học LTĐH môn Toán - Thầy Lê Bá Trần Phương Hình học giải tích trong không gian Bài 3. Viết phương trình đường thẳng () đi qua điểm M(2; 3; 1) 3x y z 1 0 x 3 y 2 z 3 cắt (1): và vuông góc với (2): 2 x 2 y 3z 6 0 1 1 2 Giáo viên: Lê Bá Trần Phương Nguồn: Hocmai.vn Hocmai.vn – Ngôi trường chung của học trò Việt Tổng đài tư vấn: 1900 58-58-12 - Trang | 2 -
Tìm kiếm theo từ khóa liên quan:
Luyện thi đại học môn Toán Ôn tập môn Toán 12 Hình học tọa độ không gian Bài tập hình học Bài tập Toán 12 Lý thuyết cơ sở về đường thẳngGợi ý tài liệu liên quan:
-
Ứng dụng tâm tỉ cự giải bài toán cực trị Hình học
10 trang 44 0 0 -
150 đề thi thử đại học môn Toán
155 trang 39 0 0 -
Đề thi thử THPT Quốc gia năm 2017 môn Toán lần 2 - Trường THPT Lương Ngọc Quyến - Mã đề 032
7 trang 34 0 0 -
Đề thi thử THPT Quốc gia năm 2017 môn Toán lần 2 - Trường THPT Lương Ngọc Quyến - Mã đề 016
6 trang 33 0 0 -
Đề thi thử THPT Quốc gia năm 2017 môn Toán lần 2 - Trường THPT Lương Ngọc Quyến - Mã đề 006
7 trang 32 0 0 -
Đề thi thử THPT Quốc gia năm 2017 môn Toán lần 2 - Trường THPT Lương Ngọc Quyến - Mã đề 014
7 trang 32 0 0 -
Đề thi thử THPT Quốc gia năm 2017 môn Toán lần 2 - Trường THPT Lương Ngọc Quyến - Mã đề 026
7 trang 31 0 0 -
Đề thi thử THPT Quốc gia năm 2017 môn Toán lần 2 - Trường THPT Lương Ngọc Quyến - Mã đề 004
7 trang 31 0 0 -
Đề thi thử THPT Quốc gia năm 2017 môn Toán lần 2 - Trường THPT Lương Ngọc Quyến - Mã đề 024
7 trang 30 0 0 -
9 trang 30 0 0