Lý thuyết đánh giá tín dụng thể nhân (P.2)
Số trang: 4
Loại file: pdf
Dung lượng: 107.65 KB
Lượt xem: 16
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
2. Các phương pháp đánh giá tín dụng thể nhân Ban đầu, cách tiếp cận cơ bản chỉ đơn thuần dựa trên phương pháp đánh giá cá nhân. Các chuyên viên tín dụng dựa trên thông tin khách hàng cung cấp (qua một mẫu đơn bao gồm các câu hỏi thống nhất) để đưa ra các quyết định chấp nhận hoặc từ chối cấp tín dụng. Do vậy, các quyết định của họ thường bị mang tính chất chủ quan và dựa vào các nguyên lý phân loại tổng quát. Các chỉ tiêu thường được xem xét để đưa ra...
Nội dung trích xuất từ tài liệu:
Lý thuyết đánh giá tín dụng thể nhân (P.2) Lý thuyết đánh giá tín dụng thể nhân (P.2) 2. Các phương pháp đánh giá tín dụng thể nhân Ban đầu, cách tiếp cận cơ bản chỉ đơn thuần dựa trên phương pháp đánh giá cá nhân. Các chuyên viên tín dụng dựa trên thông tin khách hàng cung cấp (qua một mẫu đơn bao gồm các câu hỏi thống nhất) để đưa ra các quyết định chấp nhận hoặc từ chối cấp tín dụng. Do vậy, các quyết định của họ thường bị mang tính chất chủ quan và dựa vào các nguyên lý phân loại tổng quát. Các chỉ tiêu thường được xem xét để đưa ra quyết định bao gồm: Đặc điểm của khách hàng (tình trạng hôn nhân, gia đình, nghề nghiệp, tuổ tác...); Số lượng tín dụng xin được vay; Thế chấp (khách hàng sẽ sẵn sàng trả nợ bằng những nguồn tài sản gì trong trường hợp phá sản); Năng lực trả nợ (Nguồn thu nhập khả dụng mà khách hàng có thể sử dụng để trả nợi); và Các điều kiện thị trường khác. Ngày nay, định mức tín nhiệm được dựa trên phương pháp nghiên cứu thống kê hoặc phương pháp vận trù học (là phương pháp khoa học chủ yếu dựa trên toán học để giải quyết các bài toán công nghiệp, tài chính và thương nghiệp, đặc biệt để giúp nhà kinh doanh có được các quyết định hợp lý cho các hành động trong hiện tại và tương lai). Các công cụ thống kê bao gồm phân tích phân biệt, về bản chất dựa trên sự hồi quy loga và cây phân loại, đôi khi còn được gọi là thuật toán đệ quy phân định. Các phương pháp vận trù học bao gồm một loạt các biến thể của quy hoạch tuyến tính. Hầu hết các phương pháp ghi điểm sử dụng một trong những phương pháp này hay có thể kết hợp nhiều phương pháp lại với nhau để đáp ứng được những đặc điểm ngày một phức tạp của thị trường tín dụng. Bên cạnh đó, định mức tín nhiệm cũng rất thích hợp với các cách tiếp cận thống kê phi thông số hay các mô hình AI, trong số đó nổi bật lên các phương pháp mạng lưới trung hòa đồng thời, hệ thống chuyên gia, các thuật toán dựa trên phép phân loại gen sinh học, hay phương pháp khoảng cách gần nhất. Tuy nhiên, đặc điểm hết sức thuận lợi ở đây là các phương pháp tiếp cận khác nhau có thể được sử dụng đồng thời để giải quyết cùng một bài toán phân loại. Lý do là định mức tín nhiệm luôn dựa trên mục đích thực tế là để dự đoán những khách hàng có khả năng rủi ro cao, chứ không nhằm tìm ra lý giải tại sao họ phá sản hay tìm câu trả lời cho các giả thuyết về mối quan hệ giữa khả năng phá sản và các biến số kinh tế xã hội. Vậy những mô hình này được sử dụng như thế nào? Một mẫu các khách hàng sẽ được thu thập, quy mô mẫu có thể từ một vài nghìn lên đến hàng trăm nghìn khách hàng. Đối với mỗi đơn vị mẫu, các thông tin cá nhân và lịch sử tín dụng sẽ được thu thập trong khoảng thời gian 12,18 hay 24 tháng. Khi đó, các chuyên viên tín dụng có thể xác định xem một hồ sơ như vậy có thể chấp nhận được với mức độ rủi ro như thế nào, và cuối cùng tiến hành loại bỏ những khách hàng xấu (ví dụ khách hàng xấu là những người thanh toán chậm các khoản nợ trong 3 tháng liên tiếp). Đương nhiên một thực tế cần được xem xét đến là không thể tiến hành phân loại được một số các khách hàng vì lịch sử tín dụng của họ chưa đủ dài, hay các thông tin cá nhân của họ chưa đủ rõ ràng để đưa ra các kết luận chính xác. Do vậy, các trường hợp này sẽ bị loại ra ngoài mẫu xem xét. Ở đây, nảy sinh câu hỏi đâu là giới hạn thời gian thích hợp cho dự báo định mức tín nhiệm - thời gian từ lúc nhận đơn xin vay tín dụng cho đến khi phân loại được các khách hàng. Khoảng thời gian từ 12 đến 18 tháng được coi cho là thích hợp hơn cả. Các phân tích đã chỉ ra rằng tỷ lệ phả sản như là một hàm thời gian của khách hàng tính từ lúc khởi điểm kinh doanh, và thường phải sau ít nhất 12 tháng hoặc lâu hơn thì nó mới có thể đi vào ổn định. Vì vậy, bất cứ một phạm vi thời gian nào nhỏ hơn 12 tháng sẽ bị xem là đánh giá không đúng về khả năng phá sản, cũng như không phản ánh được những đặc điểm của khả năng phá sản được dự báo. Mặt khác, một phạm vi thời gian nhiều hơn 2 năm lại có thể gây ra những biến đổi trong phân phối các đặc tính của tổng thể, và do đó tập hợp được rút ra từ tổng thể sẽ không còn giữ được những thuộc tính đặc trưng cho tổng thể nữa. Người ta thường vận dụng các mô hình phân tích chéo (cross - section) để liên kết các sự kiện của cùng một cá thể ở những khoảng thời gian khác nhau, sau đó xây dựng một mô hình ổn định khi xem xét dọc theo thời gian của cùng một cá thể đó. Phạm vi thời gian, hay còn được hiểu là khoảng thời gian giữa 2 sự kiện, cũng cần phải được xác định ngay từ ban đầu để kết quả đạt được mức độ ổn định qua thời gian. Câu hỏi còn để ngỏ là tỷ lệ của các khoản nợ tốt hay xấu được xác định như thế nào ở trong tập hợp mẫu. Nó cần phản ánh đúng tỷ lệ thực tế của tổng thể, hay nên để tỷ lệ đạt được sự cân bằng giữa các khoản nợ tốt và xấu này. Trong luận án tiến sỹ về các vấn đề thống kê trong tính điểm tín dụng, Henley dù có đề cập tới một số điểm nhưng vẫn chưa giải quyết được câu hỏi này. Định mức tín nhiệm đã thực sự trở thành một bài toán xếp loại, khi các dữ liệu đầu vào chính là các thông tin do khách hàng cung cấp và kết quả kiểm tra đối chiếu với các cơ sở kinh tế khác cũng lưu giữ hồ sơ của khách hàng (ví dụ các nhà cung cấp điện thoại), và đầu ra chính là sự phân loại thành các khoản nợ tốt hay xấu. Một tập hợp các câu trả lời A được phân chia thành 2 tập hợp con - Tập hợp x Î AB đại diện cho nhóm khách hàng được dự báo là sẽ cho những khoản nợ xấu, tập hợp x Î AG đại diện cho nhóm khách hàng được dự báo là sẽ cho những khoản nợ tốt. Quy tắc ra quyết định với các khách hàng mới khi đó sẽ là: chấp nhận đơn xin cấp tín dụng nếu các câu trả lời của khách hàng thuộc tập hợp AG và ngược lại bác bỏ đơn nếu câu trả lời thuộc tập hợp AB.Cũng cần phải đề cập đến một thực tế xuyên suốt ở đây là chúng ta không thể tiến hành phân định mọi trường hợp trong mẫu một cách chính xác. Tuy nhiên, mục đính mà chúng ta đang muốn tìm kiếm là giảm thiểu sự phân loại sai xuống mức thấp nhất c ...
Nội dung trích xuất từ tài liệu:
Lý thuyết đánh giá tín dụng thể nhân (P.2) Lý thuyết đánh giá tín dụng thể nhân (P.2) 2. Các phương pháp đánh giá tín dụng thể nhân Ban đầu, cách tiếp cận cơ bản chỉ đơn thuần dựa trên phương pháp đánh giá cá nhân. Các chuyên viên tín dụng dựa trên thông tin khách hàng cung cấp (qua một mẫu đơn bao gồm các câu hỏi thống nhất) để đưa ra các quyết định chấp nhận hoặc từ chối cấp tín dụng. Do vậy, các quyết định của họ thường bị mang tính chất chủ quan và dựa vào các nguyên lý phân loại tổng quát. Các chỉ tiêu thường được xem xét để đưa ra quyết định bao gồm: Đặc điểm của khách hàng (tình trạng hôn nhân, gia đình, nghề nghiệp, tuổ tác...); Số lượng tín dụng xin được vay; Thế chấp (khách hàng sẽ sẵn sàng trả nợ bằng những nguồn tài sản gì trong trường hợp phá sản); Năng lực trả nợ (Nguồn thu nhập khả dụng mà khách hàng có thể sử dụng để trả nợi); và Các điều kiện thị trường khác. Ngày nay, định mức tín nhiệm được dựa trên phương pháp nghiên cứu thống kê hoặc phương pháp vận trù học (là phương pháp khoa học chủ yếu dựa trên toán học để giải quyết các bài toán công nghiệp, tài chính và thương nghiệp, đặc biệt để giúp nhà kinh doanh có được các quyết định hợp lý cho các hành động trong hiện tại và tương lai). Các công cụ thống kê bao gồm phân tích phân biệt, về bản chất dựa trên sự hồi quy loga và cây phân loại, đôi khi còn được gọi là thuật toán đệ quy phân định. Các phương pháp vận trù học bao gồm một loạt các biến thể của quy hoạch tuyến tính. Hầu hết các phương pháp ghi điểm sử dụng một trong những phương pháp này hay có thể kết hợp nhiều phương pháp lại với nhau để đáp ứng được những đặc điểm ngày một phức tạp của thị trường tín dụng. Bên cạnh đó, định mức tín nhiệm cũng rất thích hợp với các cách tiếp cận thống kê phi thông số hay các mô hình AI, trong số đó nổi bật lên các phương pháp mạng lưới trung hòa đồng thời, hệ thống chuyên gia, các thuật toán dựa trên phép phân loại gen sinh học, hay phương pháp khoảng cách gần nhất. Tuy nhiên, đặc điểm hết sức thuận lợi ở đây là các phương pháp tiếp cận khác nhau có thể được sử dụng đồng thời để giải quyết cùng một bài toán phân loại. Lý do là định mức tín nhiệm luôn dựa trên mục đích thực tế là để dự đoán những khách hàng có khả năng rủi ro cao, chứ không nhằm tìm ra lý giải tại sao họ phá sản hay tìm câu trả lời cho các giả thuyết về mối quan hệ giữa khả năng phá sản và các biến số kinh tế xã hội. Vậy những mô hình này được sử dụng như thế nào? Một mẫu các khách hàng sẽ được thu thập, quy mô mẫu có thể từ một vài nghìn lên đến hàng trăm nghìn khách hàng. Đối với mỗi đơn vị mẫu, các thông tin cá nhân và lịch sử tín dụng sẽ được thu thập trong khoảng thời gian 12,18 hay 24 tháng. Khi đó, các chuyên viên tín dụng có thể xác định xem một hồ sơ như vậy có thể chấp nhận được với mức độ rủi ro như thế nào, và cuối cùng tiến hành loại bỏ những khách hàng xấu (ví dụ khách hàng xấu là những người thanh toán chậm các khoản nợ trong 3 tháng liên tiếp). Đương nhiên một thực tế cần được xem xét đến là không thể tiến hành phân loại được một số các khách hàng vì lịch sử tín dụng của họ chưa đủ dài, hay các thông tin cá nhân của họ chưa đủ rõ ràng để đưa ra các kết luận chính xác. Do vậy, các trường hợp này sẽ bị loại ra ngoài mẫu xem xét. Ở đây, nảy sinh câu hỏi đâu là giới hạn thời gian thích hợp cho dự báo định mức tín nhiệm - thời gian từ lúc nhận đơn xin vay tín dụng cho đến khi phân loại được các khách hàng. Khoảng thời gian từ 12 đến 18 tháng được coi cho là thích hợp hơn cả. Các phân tích đã chỉ ra rằng tỷ lệ phả sản như là một hàm thời gian của khách hàng tính từ lúc khởi điểm kinh doanh, và thường phải sau ít nhất 12 tháng hoặc lâu hơn thì nó mới có thể đi vào ổn định. Vì vậy, bất cứ một phạm vi thời gian nào nhỏ hơn 12 tháng sẽ bị xem là đánh giá không đúng về khả năng phá sản, cũng như không phản ánh được những đặc điểm của khả năng phá sản được dự báo. Mặt khác, một phạm vi thời gian nhiều hơn 2 năm lại có thể gây ra những biến đổi trong phân phối các đặc tính của tổng thể, và do đó tập hợp được rút ra từ tổng thể sẽ không còn giữ được những thuộc tính đặc trưng cho tổng thể nữa. Người ta thường vận dụng các mô hình phân tích chéo (cross - section) để liên kết các sự kiện của cùng một cá thể ở những khoảng thời gian khác nhau, sau đó xây dựng một mô hình ổn định khi xem xét dọc theo thời gian của cùng một cá thể đó. Phạm vi thời gian, hay còn được hiểu là khoảng thời gian giữa 2 sự kiện, cũng cần phải được xác định ngay từ ban đầu để kết quả đạt được mức độ ổn định qua thời gian. Câu hỏi còn để ngỏ là tỷ lệ của các khoản nợ tốt hay xấu được xác định như thế nào ở trong tập hợp mẫu. Nó cần phản ánh đúng tỷ lệ thực tế của tổng thể, hay nên để tỷ lệ đạt được sự cân bằng giữa các khoản nợ tốt và xấu này. Trong luận án tiến sỹ về các vấn đề thống kê trong tính điểm tín dụng, Henley dù có đề cập tới một số điểm nhưng vẫn chưa giải quyết được câu hỏi này. Định mức tín nhiệm đã thực sự trở thành một bài toán xếp loại, khi các dữ liệu đầu vào chính là các thông tin do khách hàng cung cấp và kết quả kiểm tra đối chiếu với các cơ sở kinh tế khác cũng lưu giữ hồ sơ của khách hàng (ví dụ các nhà cung cấp điện thoại), và đầu ra chính là sự phân loại thành các khoản nợ tốt hay xấu. Một tập hợp các câu trả lời A được phân chia thành 2 tập hợp con - Tập hợp x Î AB đại diện cho nhóm khách hàng được dự báo là sẽ cho những khoản nợ xấu, tập hợp x Î AG đại diện cho nhóm khách hàng được dự báo là sẽ cho những khoản nợ tốt. Quy tắc ra quyết định với các khách hàng mới khi đó sẽ là: chấp nhận đơn xin cấp tín dụng nếu các câu trả lời của khách hàng thuộc tập hợp AG và ngược lại bác bỏ đơn nếu câu trả lời thuộc tập hợp AB.Cũng cần phải đề cập đến một thực tế xuyên suốt ở đây là chúng ta không thể tiến hành phân định mọi trường hợp trong mẫu một cách chính xác. Tuy nhiên, mục đính mà chúng ta đang muốn tìm kiếm là giảm thiểu sự phân loại sai xuống mức thấp nhất c ...
Tìm kiếm theo từ khóa liên quan:
tài liệu chứng khoán tài chính doanh nghiệp Lý thuyết đánh giá dự báo rủi ro tín dụng thể nhânGợi ý tài liệu liên quan:
-
Giáo trình Tài chính doanh nghiệp: Phần 2 - TS. Bùi Văn Vần, TS. Vũ Văn Ninh (Đồng chủ biên)
360 trang 765 21 0 -
18 trang 461 0 0
-
Giáo trình Tài chính doanh nghiệp: Phần 1 - TS. Bùi Văn Vần, TS. Vũ Văn Ninh (Đồng chủ biên)
262 trang 436 15 0 -
Giáo trình Quản trị tài chính doanh nghiệp: Phần 2 - TS. Nguyễn Thu Thủy
186 trang 421 12 0 -
Chiến lược marketing trong kinh doanh
24 trang 380 1 0 -
Giáo trình Quản trị tài chính doanh nghiệp: Phần 1 - TS. Nguyễn Thu Thủy
206 trang 370 10 0 -
3 trang 302 0 0
-
Tạo nền tảng phát triển bền vững thị trường bảo hiểm Việt Nam
3 trang 288 0 0 -
Đề cương học phần Tài chính doanh nghiệp
20 trang 285 0 0 -
Bài giảng: Chương 2: Bảo hiểm hàng hải
94 trang 268 1 0