LÝ THUYẾT XÁC SUẤT PHẦN 1 - TRẦN DIÊN HIỂN - 3
Số trang: 15
Loại file: pdf
Dung lượng: 462.44 KB
Lượt xem: 16
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
BIẾN CỐ NGẪU NHIÊN ĐỘC LẬPA. THÔNG TIN CƠ BẢNTa xét bài toán: “Gieo một đồng tiền xu và một con xúc xắc. Tìm xác suất để xuất hiện mặt ngửa trên đồng tiền và mặt có số chấm là bội của 3 trên con xúc xắc". Mỗi biến cố trong phép thử này có dạng: N ∩ Qk = "Trên đồng tiền xuất hiện mặt ngửa và con xúc xắc xuất hiện mặt k chấm", k = 1, 2, ..., 6 hoặc S ∩ Qk = "Trên đồng tiền xuất hiện mặt sấp và con xúc xắc xuất hiện...
Nội dung trích xuất từ tài liệu:
LÝ THUYẾT XÁC SUẤT PHẦN 1 - TRẦN DIÊN HIỂN - 3Simpo PDF Merge and Split Unregistered Version - http://www.simpopdf.com NHẬP MÔN LÍ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN TIỂU CHỦ ĐỀ 1.3. BIẾN CỐ NGẪU NHIÊN ĐỘC LẬP A. THÔNG TIN CƠ BẢN Ta xét bài toán: “Gieo một đồng tiền xu và một con xúc xắc. Tìm xác suất để xuất hiện mặt ngửa trên đồng tiền và mặt có số chấm là bội của 3 trên con xúc xắc. Mỗi biến cố trong phép thử này có dạng: N ∩ Qk = Trên đồng tiền xuất hiện mặt ngửa và con xúc xắc xuất hiện mặt k chấm, k = 1, 2, ..., 6 hoặc S ∩ Qk = Trên đồng tiền xuất hiện mặt sấp và con xúc xắc xuất hiện mặt k chấm, k = 1, 2, ..., 6. Số biến cố trong phép thử này là 12. Ta phải tìm xác suất của biến cố: N ∩ B = Trên đồng tiền xuất hiện mặt ngửa và con xúc xắc xuất hiện mặt 3 chấm hoặc 6 chấm. Có hai biến cố N ∩ Q3 và N ∩ Q6 thuận lợi đối với N ∩ B. Vì vậy: 2 12 P (N ∩ B) = = . = P (N) . P (B). 12 26 Trực giác cho ta thấy rằng việc xuất hiện mặt ngửa trên đồng tiền và mặt có số chấm là bội của ba trên xúc xắc là hai biến cố xảy ra một cách độc lập với nhau. Từ phân tích trên ta đi đến định nghĩa: Cho A và B là hai biến cố của phép thử. Ta nói rằng hai biến cố A, B là độc lập với nhau, nếu P (A ∩ B) = P (A) P (B) Ví dụ 3.1 Trên bàn có một túi đựng bài thi môn Toán và một túi đựng bài thi môn Tiếng Việt. Môn Toán có 70% số bài đạt điểm giỏi, môn Tiếng Việt có 85% số bài đạt điểm giỏi. Rút ngẫu nhiên từ mỗi túi một bài thi, tìm xác suất để cả hai bài đều đạt điểm giỏi. Giải: Ta kí hiệu: TG = Rút ngẫu nhiên ta được bài thi môn Toán đạt điểm giỏi. VG = Rút ngẫu nhiên ta được bài thi môn Tiếng Việt đạt điểm giỏi. Rõ ràng là hai biến cố trên độc lập với nhau. Vậy ta có: P (TG ∩ VG) = P (TG) P (VG) = 0,70 . 0,85 31Simpo PDF Merge and Split Unregistered Version - http://www.simpopdf.com NHẬP MÔN LÍ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN = 0,595 ≈ 0,60. Chú ý: Từ định nghĩa ta có thể suy ra rằng nếu A và B là hai biến cố độc lập thì các cặp biến cố A và B, A và B , A và B cùng độc lập với nhau. Ví dụ 3.2 Hai xạ thủ cùng bắn vào một mục tiêu một cách độc lập. Xác suất bắn trúng đích của người thứ nhất bằng 0,75 và của người thứ hai bằng 0,85. Tìm xác suất để có ít nhất một người bắn trúng đích. Giải: Ta kí hiệu: Tk = Người thứ k bắn trúng đích, k = 1, 2. Ít nhất một người bắn trúng đích là biến cố T1 ∪ T2. Theo tính chất của xác suất ta có: P (T1 ∪ T2) = P (T1) + P (T2) - P (T1 ∩ T2) = 0,75 + 0,85 - 0,75 . 0,85 = 0,9625 ≈ 0,96. B. HOẠT ĐỘNG HOẠT ĐỘNG 3.1. THỰC HÀNH TÍNH XÁC SUẤT CỦA CÁC BIẾN CỐ ĐỘC LẬP NHIỆM VỤ Sinh viên tự đọc thông tin cơ bản sau đó trình bày trước lớp kết quả tìm hiểu về các nhiệm vụ sau: NHIỆM VỤ 1: Định nghĩa biến cố ngẫu nhiên độc lập. NHIỆM VỤ 2: Xây dựng hai ví dụ về vận dụng công thức xác suất độc lập để tính xác suất. ĐÁNH GIÁ 32Simpo PDF Merge and Split Unregistered Version - http://www.simpopdf.com NHẬP MÔN LÍ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN 3.1. Cuốn sách Toán 4 có 220 trang, Tiếng Việt 4 có 265 trang. Bạn Hà mở ngẫu nhiên một trang trong cuốn sách Toán, bạn An mở ngẫu nhiên một trang trong cuốn sách Tiếng Việt. Tìm xác suất để: a) Cả hai bạn đều mở được trang là số tròn chục. b) Ít nhất một bạn mở được trang là số tròn chục. 3.2. Tín hiệu thông tin được phát liên tiếp hai lần. Trạm thu tiếp nhận được thông tin trong mỗi lần phát với xác suất bằng 0,35. a) Tìm xác suất để trạm thu nhận được thông tin đó. b) Nếu muốn xác suất nhận được thông tin không nhỏ hơn 0,9 thì phải phát tin đó bao nhiêu lần? 33Simpo PDF Merge and Split Unregistered Version - http://www.simpopdf.com NHẬP MÔN LÍ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN TIỂU CHỦ ĐỀ 1.4. XÁC SUẤT ĐIỀU KIỆN A. THÔNG TIN CƠ BẢN Giả sử trong một phép thử đã xuất hiện biến cố B. Ta phải tìm xác suất của biến cố A. Có ba khả năng xảy ra: - Nếu A và B là hai biến cố xung khắc thì P (A) = 0. - Nếu B thuận lợi đối với A thì P (A) = 1. - Nếu A và B là hai biến cố ...
Nội dung trích xuất từ tài liệu:
LÝ THUYẾT XÁC SUẤT PHẦN 1 - TRẦN DIÊN HIỂN - 3Simpo PDF Merge and Split Unregistered Version - http://www.simpopdf.com NHẬP MÔN LÍ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN TIỂU CHỦ ĐỀ 1.3. BIẾN CỐ NGẪU NHIÊN ĐỘC LẬP A. THÔNG TIN CƠ BẢN Ta xét bài toán: “Gieo một đồng tiền xu và một con xúc xắc. Tìm xác suất để xuất hiện mặt ngửa trên đồng tiền và mặt có số chấm là bội của 3 trên con xúc xắc. Mỗi biến cố trong phép thử này có dạng: N ∩ Qk = Trên đồng tiền xuất hiện mặt ngửa và con xúc xắc xuất hiện mặt k chấm, k = 1, 2, ..., 6 hoặc S ∩ Qk = Trên đồng tiền xuất hiện mặt sấp và con xúc xắc xuất hiện mặt k chấm, k = 1, 2, ..., 6. Số biến cố trong phép thử này là 12. Ta phải tìm xác suất của biến cố: N ∩ B = Trên đồng tiền xuất hiện mặt ngửa và con xúc xắc xuất hiện mặt 3 chấm hoặc 6 chấm. Có hai biến cố N ∩ Q3 và N ∩ Q6 thuận lợi đối với N ∩ B. Vì vậy: 2 12 P (N ∩ B) = = . = P (N) . P (B). 12 26 Trực giác cho ta thấy rằng việc xuất hiện mặt ngửa trên đồng tiền và mặt có số chấm là bội của ba trên xúc xắc là hai biến cố xảy ra một cách độc lập với nhau. Từ phân tích trên ta đi đến định nghĩa: Cho A và B là hai biến cố của phép thử. Ta nói rằng hai biến cố A, B là độc lập với nhau, nếu P (A ∩ B) = P (A) P (B) Ví dụ 3.1 Trên bàn có một túi đựng bài thi môn Toán và một túi đựng bài thi môn Tiếng Việt. Môn Toán có 70% số bài đạt điểm giỏi, môn Tiếng Việt có 85% số bài đạt điểm giỏi. Rút ngẫu nhiên từ mỗi túi một bài thi, tìm xác suất để cả hai bài đều đạt điểm giỏi. Giải: Ta kí hiệu: TG = Rút ngẫu nhiên ta được bài thi môn Toán đạt điểm giỏi. VG = Rút ngẫu nhiên ta được bài thi môn Tiếng Việt đạt điểm giỏi. Rõ ràng là hai biến cố trên độc lập với nhau. Vậy ta có: P (TG ∩ VG) = P (TG) P (VG) = 0,70 . 0,85 31Simpo PDF Merge and Split Unregistered Version - http://www.simpopdf.com NHẬP MÔN LÍ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN = 0,595 ≈ 0,60. Chú ý: Từ định nghĩa ta có thể suy ra rằng nếu A và B là hai biến cố độc lập thì các cặp biến cố A và B, A và B , A và B cùng độc lập với nhau. Ví dụ 3.2 Hai xạ thủ cùng bắn vào một mục tiêu một cách độc lập. Xác suất bắn trúng đích của người thứ nhất bằng 0,75 và của người thứ hai bằng 0,85. Tìm xác suất để có ít nhất một người bắn trúng đích. Giải: Ta kí hiệu: Tk = Người thứ k bắn trúng đích, k = 1, 2. Ít nhất một người bắn trúng đích là biến cố T1 ∪ T2. Theo tính chất của xác suất ta có: P (T1 ∪ T2) = P (T1) + P (T2) - P (T1 ∩ T2) = 0,75 + 0,85 - 0,75 . 0,85 = 0,9625 ≈ 0,96. B. HOẠT ĐỘNG HOẠT ĐỘNG 3.1. THỰC HÀNH TÍNH XÁC SUẤT CỦA CÁC BIẾN CỐ ĐỘC LẬP NHIỆM VỤ Sinh viên tự đọc thông tin cơ bản sau đó trình bày trước lớp kết quả tìm hiểu về các nhiệm vụ sau: NHIỆM VỤ 1: Định nghĩa biến cố ngẫu nhiên độc lập. NHIỆM VỤ 2: Xây dựng hai ví dụ về vận dụng công thức xác suất độc lập để tính xác suất. ĐÁNH GIÁ 32Simpo PDF Merge and Split Unregistered Version - http://www.simpopdf.com NHẬP MÔN LÍ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN 3.1. Cuốn sách Toán 4 có 220 trang, Tiếng Việt 4 có 265 trang. Bạn Hà mở ngẫu nhiên một trang trong cuốn sách Toán, bạn An mở ngẫu nhiên một trang trong cuốn sách Tiếng Việt. Tìm xác suất để: a) Cả hai bạn đều mở được trang là số tròn chục. b) Ít nhất một bạn mở được trang là số tròn chục. 3.2. Tín hiệu thông tin được phát liên tiếp hai lần. Trạm thu tiếp nhận được thông tin trong mỗi lần phát với xác suất bằng 0,35. a) Tìm xác suất để trạm thu nhận được thông tin đó. b) Nếu muốn xác suất nhận được thông tin không nhỏ hơn 0,9 thì phải phát tin đó bao nhiêu lần? 33Simpo PDF Merge and Split Unregistered Version - http://www.simpopdf.com NHẬP MÔN LÍ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN TIỂU CHỦ ĐỀ 1.4. XÁC SUẤT ĐIỀU KIỆN A. THÔNG TIN CƠ BẢN Giả sử trong một phép thử đã xuất hiện biến cố B. Ta phải tìm xác suất của biến cố A. Có ba khả năng xảy ra: - Nếu A và B là hai biến cố xung khắc thì P (A) = 0. - Nếu B thuận lợi đối với A thì P (A) = 1. - Nếu A và B là hai biến cố ...
Tìm kiếm theo từ khóa liên quan:
giáo trình xác suất giáo trình đại học luận văn tốt nghiệp tài liệu kỹ thuật phương pháp giải toán bài tập toán họcGợi ý tài liệu liên quan:
-
Giáo trình phân tích một số loại nghiệp vụ mới trong kinh doanh ngân hàng quản lý ngân quỹ p5
7 trang 470 0 0 -
99 trang 407 0 0
-
98 trang 327 0 0
-
36 trang 318 0 0
-
MARKETING VÀ QUÁ TRÌNH KIỂM TRA THỰC HIỆN MARKETING
6 trang 297 0 0 -
96 trang 293 0 0
-
Luận văn tốt nghiệp: Lập hồ sơ dự thầu gói thầu số 01: Xây lắp - trường mẫu giáo Hưng Thuận
254 trang 283 1 0 -
87 trang 247 0 0
-
72 trang 245 0 0
-
96 trang 244 3 0