Danh mục

LÝ THUYẾT XÁC SUẤT PHẦN 1 - TRẦN DIÊN HIỂN - 5

Số trang: 15      Loại file: pdf      Dung lượng: 427.88 KB      Lượt xem: 20      Lượt tải: 0    
tailieu_vip

Phí tải xuống: 3,000 VND Tải xuống file đầy đủ (15 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Dưới sự hướng dẫn của giáo viên, sinh viên đọc, thảo luận cặp đôi nội dung thông tin cơ bản để thực hiện các nhiệm vụ sau: Biết rằng xác suất để một người 70 tuổi tiếp tục sống đến 75 tuổi là 0,8. Chọn 500 người 70 tuổi một cách ngẫu nhiên. Xác định xác suất sau: a) Có đúng 390 người sống được đến 75 tuổi. b) Có khoảng từ 375 đến 425 người sống được đến 75 tuổi.
Nội dung trích xuất từ tài liệu:
LÝ THUYẾT XÁC SUẤT PHẦN 1 - TRẦN DIÊN HIỂN - 5Simpo PDF Merge and Split Unregistered Version - http://www.simpopdf.com NHẬP MÔN LÍ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN B. HOẠT ĐỘNG HOẠT ĐỘNG 6.1. THỰC HÀNH VẬN DỤNG ĐỊNH LÍ GIỚI HẠN TRUNG TÂM NHIỆM VỤ Dưới sự hướng dẫn của giáo viên, sinh viên đọc, thảo luận cặp đôi nội dung thông tin cơ bản để thực hiện các nhiệm vụ sau: Biết rằng xác suất để một người 70 tuổi tiếp tục sống đến 75 tuổi là 0,8. Chọn 500 người 70 tuổi một cách ngẫu nhiên. Xác định xác suất sau: a) Có đúng 390 người sống được đến 75 tuổi. b) Có khoảng từ 375 đến 425 người sống được đến 75 tuổi. NHIỆM VỤ 1: Kí hiệu S là số người trong 500 người 70 tuổi sống được đến 75 tuổi. Biết rằng S có phân phối nhị thức. Xác định tham số (n; p) của phân phối đó. NHIỆM VỤ 2: Dựa vào công thức xác suất nhị thức: P(S = k) = Ck p k q n − k , q = 1 − p n để viết công thức tính P(S = 390). NHIỆM VỤ 3: Sử dụng công thức (2) để tính gần đúng P(S = 390). NHIỆM VỤ 4: Từ công thức: ⎛ k − np S − np l − np ⎞ P(k < S < l) = P ⎜ < < ⎟ ⎜ npq npq ⎟ npq ⎝ ⎠ và công thức (3) để tính gần đúng P(375 < S < 425). ĐÁNH GIÁ a) Kí hiệu n là số lần thành công trong n phép thử Bécnuli với xác suất thành công là p và đặt p = Sn / n . Chứng tỏ rằng: Sn − np p − p = n. npq pq 61Simpo PDF Merge and Split Unregistered Version - http://www.simpopdf.com NHẬP MÔN LÍ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN p−p Với n khá lớn, ta có thể coi n có phân phối chuẩn tắc N(0; 1) được không? Vì sao? npq THÔNG TIN PHẢN HỒI Đối với hoạt động 6.1, n = 500, p = 0,80. + P(S = 390) = C500 .0,80390 0, 2110 . 390 ⎛ 390 − 400 ⎞ ψ (−1,12) 1 + P(S = 390) ≈ ψ⎜ ⎟= ≈ 0, 0238. 500.0,80.0, 20 ⎜ 500.0,80.0, 20 ⎟ 8,94 ⎝ ⎠ + P(375 < S < 425) ≈ Φ (2,8) − Φ (−2,8) ≈ 0,995. 62Simpo PDF Merge and Split Unregistered Version - http://www.simpopdf.com NHẬP MÔN LÍ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN TIỂU CHỦ ĐỀ 2.7. KÌ VỌNG VÀ PHƯƠNG SAI THÔNG TIN CƠ BẢN Kì vọng của biến ngẫu nhiên là số đặc trưng cho giá trị trung bình của biến ngẫu nhiên đó. Phương sai của biến ngẫu nhiên là số đặc trưng cho mức độ phân tán của các giá trị của biến ngẫu nhiên so với kì vọng. a) Giả sử X là biến ngẫu nhiên rời rạc với bảng phân phối: X x1 x2 ... xk ... P p1 p2 ... pk ... Kì vọng của biến ngẫu nhiên X, kí hiệu là E(X), là số được xác định bởi công thức: ∑x p E(X) = x1 p1 + x2 p2 + ... + xk pk + ... = (2) k k k ≥1 Đối với biến ngẫu nhiên liên tục với hàm mật độ f(x) thì: ∞ E(X) = ∫ xf (x)dx. (3) −∞ Ta dễ dàng chứng minh các tính chất sau của kì vọng: (i) Nếu X = a thì E(X) = a; (ii) E(aX + b) = aE(X) + b, trong đó X là biến ngẫu nhiên, a và b là hằng số tùy ý. b) Phương sai của biến ngẫu nhiên X, kí hiệu là V(X), là một số đặc trưng xác định bởi công thức: V(X) = E[(X − E(X))2] = E(X2) – (E(X))2. (4) Nếu X là biến ngẫu nhiên rời rạc với bảng phân phối (1) thì ∑ (x − a) 2 p k V(X) = (5) k k ≥1 Với a = E(X). Theo công thức (3) ta có: 2 ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: