Danh mục

LÝ THUYẾT XÁC SUẤT PHẦN 1 - TRẦN DIÊN HIỂN - 6

Số trang: 14      Loại file: pdf      Dung lượng: 392.19 KB      Lượt xem: 13      Lượt tải: 0    
Hoai.2512

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Để tính trung vị, ta thường sắp thứ tự các số liệu thành dãy tăng và lấy số ở giữa dãy. - Để tính mode, ta thường lập bảng phân phối tần số. Từ đó chọn giá trị mẫu có tần số lớn nhất. PHƯƠNG SAI VÀ ĐỘ LỆCH CHUẨN MẪU A. THÔNG TIN CƠ BẢN Hai tập mẫu (tài liệu) có thể cùng trung bình, trung vị và mode nhưng hoàn toàn khác nhau theo nghĩa độ biến động (độ lệch) giữa các giá trị của mẫu này so với trung bình của nó rất khác so với độ biến động tương...
Nội dung trích xuất từ tài liệu:
LÝ THUYẾT XÁC SUẤT PHẦN 1 - TRẦN DIÊN HIỂN - 6 Simpo PDF Merge and Split Unregistered Version - http://www.simpopdf.com NHẬP MÔN LÍ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN ___ Hãy tính X , trung vị và mode. THÔNG TIN PHẢN HỒI - Để tính trung vị, ta thường sắp thứ tự các số liệu thành dãy tăng và lấy số ở giữa dãy. - Để tính mode, ta thường lập bảng phân phối tần số. Từ đó chọn giá trị mẫu có tần số lớn nhất. 76 Simpo PDF Merge and Split Unregistered Version - http://www.simpopdf.com NHẬP MÔN LÍ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN TIỂU CHỦ ĐỀ 3.3. PHƯƠNG SAI VÀ ĐỘ LỆCH CHUẨN MẪU A. THÔNG TIN CƠ BẢN Hai tập mẫu (tài liệu) có thể cùng trung bình, trung vị và mode nhưng hoàn toàn khác nhau theo nghĩa độ biến động (độ lệch) giữa các giá trị của mẫu này so với trung bình của nó rất khác so với độ biến động tương ứng trong mẫu kia. Người ta đã lấy phương sai hay độ lệch chuẩn mẫu đã đánh giá độ biến động hay độ phân tán của các giá trị mẫu so với trung bình mẫu. Giả sử (X1, X2,… Xn) là một mẫu. Đại lượng __ __ (X − X ) 2 + ..... + (X n − X ) 2 S= 1 2 (1) n −1 ___ được gọi là phương sai mẫu (điều chỉnh), trong đó X là trung bình mẫu. (1) có thể viết gọn như sau: n 1 __ ∑ (X S2 = k −X) 2 n −1 k =1 n 1 __ ∑ (X Đại lượng S2 = k −X) 2 được gọi là độ lệch chuẩn mẫu. n −1 k =1 Chú ý: a) Trong thực hành ta có thể tính phương sai mẫu nhanh hơn nhờ công thức n n n (∑ X 2 ) − (∑ X k ) 2 k k =1 k =1 S2 = . n (n − 1) Và do đó n n n (∑ X 2 ) − (∑ X k ) 2 k k =1 k =1 S= . n (n − 1) b) Nếu mẫu được cho dưới dạng bảng phân phối tần số Xk X1 X2 … Xk …. Xm Tần số n1 n2 … nk … nm 77 Simpo PDF Merge and Split Unregistered Version - http://www.simpopdf.com NHẬP MÔN LÍ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN X1r 1 + X 2 r2 + ..... + X m rm __ X= , (n = r1 + r2 + ..... + rm ) Thì n m m n (∑ rk X 2 ) − (∑ rk X k ) 2 k k =1 k =1 S2 = n (n − 1) B. HOẠT ĐỘNG HOẠT ĐỘNG 3.1. THỰC HÀNH TÍNH PHƯƠNG SAI MẪU NHIỆM VỤ: - Giáo viên hướng dẫn sinh viên thực hiện các nhiệm vụ sau: Chiều cao của 5 cầu thủ bóng đá được chọn từ đội tuyển I như sau (đơn vị: cm) 172 173 176 176 178. Hãy tính độ lệch chuẩn. NHIỆM VỤ 1: ___ Chứng tỏ rằng X = 175. NHIỆM VỤ 2: Hoàn thiện bảng độ lệch và bình phương độ lệch của các số đo chiều cao với trung bình Chiều cao Xk 172 173 176 176 178 ___ ___ –3 –2 1 Độ lệch so với X : (Xk – X ) ___ 9 4 1 24 Bình phương độ lệch ( ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: