Mạch điện tử : MẠCH DAO ÐỘNG (Oscillators) part 2
Số trang: 5
Loại file: pdf
Dung lượng: 309.56 KB
Lượt xem: 12
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
c. Mạch dao động dịch pha dùng FET: - Do FET có tổng trở vào rất lớn nên cũng thích hợp cho loại mạch này. - Tổng trở ra của mạch khuếch đại khi không có hồi tiếp: R0 = RD||rD phải thiết kế sao cho R0 không đáng kể so với tổng trở vào của hệ thống hồi tiếp để tần số dao động vẫn thỏa mãn công thức:Nếu điều kiện trên không thỏa mãn thì ngoài R và C, tần số dao động sẽ còn tùy thuộc vào R0 (xem mạch dùng BJT). - Ðộ lợi vòng hở...
Nội dung trích xuất từ tài liệu:
Mạch điện tử : MẠCH DAO ÐỘNG (Oscillators) part 2 - Tần số dao động được xác định bởi: c. Mạch dao động dịch pha dùng FET: - Do FET có tổng trở vào rất lớn nên cũng thích hợp cho loại mạch này. - Tổng trở ra của mạch khuếch đại khi không có hồi tiếp:R0 = RD||rD phải thiết kế sao cho R0 không đáng kể so với tổng trở vào của hệ thống hồi tiếp để tần sốdao động vẫn thỏa mãn công thức: Nếu điều kiện trên không thỏa mãn thì ngoài R và C, tần số dao động sẽ còn tùy thuộc vàoR0 (xem mạch dùng BJT). - Ðộ lợi vòng hở của mạch: Av = -gm(RD||rD) 29 nên phải chọn Fet có gm, rD lớn và phảithiết kế với RD tương đối lớn. d. Mạch dùng BJT: - Mạch khuếch đại là cực phát chung có hoặc không có tụ phân dòng cực phát. - Ðiều kiện tổng trở vào của mạch không thỏa mãn nên điện trở R cuối cùng của hệ thốnghồi tiếp là: R = R’ + (R1||R2||Zb) (10.8) Với Zb = re nếu có CE và Zb = (re + RE) nếu không có CE. - Tổng trở của mạch khi ch ưa có hồi tiếp R0 RC không nhỏ lắm nên làm ảnh hưởng đếntần số dao động. Mạch phân giải được vẽ lại -Áp dụng cách phân giải như phần trước ta tìm được tần số dao động: - Thường người ta thêm một tầng khuếch đại đệm cực thu chung để tải không ảnh h ưởngđến mạch dao động. 10.1.2 Mạch dao động cầu Wien: (wien bridge oscillators) - Cũng là một dạng dao động dịch pha. Mạch thường dùng op-amp ráp theo kiểu khuếch đạikhông đảo nên hệ thống hồi tiếp phải có độ lệch pha 00. Mạch căn bản như hình 10.8a và hệ thống hồitiếp như hình 10.8bTại tần số dao động 0: Trong mạch cơ bản hình 10.8a, ta chú ý: - Nếu độ lợi vòng hở Av < 3 mạch không dao động - Nếu độ lợi vòng hở Av >> 3 thì tín hiệu dao động nhận được bị biến dạng (đỉnh dương vàđỉnh âm của hình sin bị cắt). - Cách tốt nhất là khi khởi động, mạch tạo Av > 3 (để dễ dao động) xong giảm dần xuốnggần bằng 3 để có thể giảm thiểu tối đa việc biến dạng. Người ta có nhiều cách, hình 10.9 là một ví dụdùng diode hoạt động trong vùng phi tuyến để thay đổi độ lợi điện thế của mạch. - Khi biên độ của tín hiệu ra còn nhỏ, D1, D2 không dẫn điện và không ảnh hưởng đếnmạch. Ðộ lợi điện thế của mạch lúc này là: - Ðộ lợi này đủ để mạch dao động. Khi điện thế đỉnh của tín hiệu ngang qua R 4 khoảng 0.5volt thì các diode sẽ bắt đầu dẫn điện. D1 dẫn khi ngõ ra dương và D2 dẫn khi ngõ ra âm. Khi dẫn mạnhnhất, điện thế ngang diode xấp xỉ 0.7 volt. Ðể ý là hai diode chỉ dẫn điện ở phần đỉnh của tín hiệu ra vànó hoạt động như một điện trở thay đổi nối tiếp với R5 và song song với R4 làm giảm độ lợi của mạch,sao cho độ lợi lúc này xuống gần bằng 3 và có tác dụng làm giảm thiểu sự biến dạng. Việc phân giải hoạtđộng của diode trong vùng phi tuyến tương đối phức tạp, thực tế người ta mắc thêm một điện trở R5 (nhưhình vẽ) để điều chỉnh độ lợi của mạch sao cho độ biến dạng đạt đ ược ở mức thấp nhất. - Ngoài ra cũng nên để ý là độ biến dạng sẽ càng nhỏ khi biên độ tín hiệu ở ngõ ra càngthấp. Thực tế, để lấy tín hiệu ra của mạch dao động người ta có thể mắc thêm một mạch không đảo songsong với R1C1 như hình vẽ thay vì mắc nối tiếp ở ngõ ra của mạch dao động. Do tổng trở vào lớn, mạchnày gần như không ảnh hưởng đến hệ thống hồi tiếp nh ưng tín hiệu lấy ra có độ biến dạng được giảmthiểu đáng kể do tác động lọc của R1C1. - Một phương pháp khác để giảm biến dạng và tăng độ ổn định biên độ tín hiệu dao động,người ta sử dụng JFET trong mạch hồi tiếp âm nh ư một điện trở thay đổi. Lúc này JFET được phân cựctrong vùng điện trở (ohmic region-vùng ID chưa bảo hòa) và tác động như một điện trở thay đổi theo điệnthế (VVR-voltage variable resistor). - Ta xem mạch hình 10.10 - D1, D2 được dùng như mạch chỉnh lưu một bán kỳ (âm); C3 là tụ lọc. Mạch này tạo điệnthế âm phân cực cho JFET. - Khi cấp điện, mạch bắt đầu dao động, biên độ tín hiêu ra khi chưa đủ làm cho D1 và D2dẫn điện thì VGS = 0 tức JFET dẫn mạnh nhất và rds nhỏ nhất và độ lợi điện thế của op-amp đạt giá trị tốiđa. - Sự dao động tiếp tục, khi điện thế đỉnh ngõ ra âm đạt trị số xấp xỉ -(Vz + 0.7v) thì D1 vàD2 sẽ dẫn điện và VGS bắt đầu âm. - Sự gia tăng của tín hiệu điện thế đỉnh ngõ ra sẽ làm cho VGS càng âm tức rds tăng. Khi rdstăng, độ lợi Av của mạch giảm để cuối cùng đạt được độ lợi vòng bằng đơn vị khi mạch hoạt động ổnđịnh. - Thực tế, để mạch hoạt động ở điều kiện tốt nhất, người ta dùng biến trở R4 để có thể chỉnhđạt độ biến dạng thấp nhất. Vấn đề điều chỉnh tần số: - Trong mạch dao động cầu Wien, tần số và hệ số hồi tiếp được xác định bằng công thức: - N ...
Nội dung trích xuất từ tài liệu:
Mạch điện tử : MẠCH DAO ÐỘNG (Oscillators) part 2 - Tần số dao động được xác định bởi: c. Mạch dao động dịch pha dùng FET: - Do FET có tổng trở vào rất lớn nên cũng thích hợp cho loại mạch này. - Tổng trở ra của mạch khuếch đại khi không có hồi tiếp:R0 = RD||rD phải thiết kế sao cho R0 không đáng kể so với tổng trở vào của hệ thống hồi tiếp để tần sốdao động vẫn thỏa mãn công thức: Nếu điều kiện trên không thỏa mãn thì ngoài R và C, tần số dao động sẽ còn tùy thuộc vàoR0 (xem mạch dùng BJT). - Ðộ lợi vòng hở của mạch: Av = -gm(RD||rD) 29 nên phải chọn Fet có gm, rD lớn và phảithiết kế với RD tương đối lớn. d. Mạch dùng BJT: - Mạch khuếch đại là cực phát chung có hoặc không có tụ phân dòng cực phát. - Ðiều kiện tổng trở vào của mạch không thỏa mãn nên điện trở R cuối cùng của hệ thốnghồi tiếp là: R = R’ + (R1||R2||Zb) (10.8) Với Zb = re nếu có CE và Zb = (re + RE) nếu không có CE. - Tổng trở của mạch khi ch ưa có hồi tiếp R0 RC không nhỏ lắm nên làm ảnh hưởng đếntần số dao động. Mạch phân giải được vẽ lại -Áp dụng cách phân giải như phần trước ta tìm được tần số dao động: - Thường người ta thêm một tầng khuếch đại đệm cực thu chung để tải không ảnh h ưởngđến mạch dao động. 10.1.2 Mạch dao động cầu Wien: (wien bridge oscillators) - Cũng là một dạng dao động dịch pha. Mạch thường dùng op-amp ráp theo kiểu khuếch đạikhông đảo nên hệ thống hồi tiếp phải có độ lệch pha 00. Mạch căn bản như hình 10.8a và hệ thống hồitiếp như hình 10.8bTại tần số dao động 0: Trong mạch cơ bản hình 10.8a, ta chú ý: - Nếu độ lợi vòng hở Av < 3 mạch không dao động - Nếu độ lợi vòng hở Av >> 3 thì tín hiệu dao động nhận được bị biến dạng (đỉnh dương vàđỉnh âm của hình sin bị cắt). - Cách tốt nhất là khi khởi động, mạch tạo Av > 3 (để dễ dao động) xong giảm dần xuốnggần bằng 3 để có thể giảm thiểu tối đa việc biến dạng. Người ta có nhiều cách, hình 10.9 là một ví dụdùng diode hoạt động trong vùng phi tuyến để thay đổi độ lợi điện thế của mạch. - Khi biên độ của tín hiệu ra còn nhỏ, D1, D2 không dẫn điện và không ảnh hưởng đếnmạch. Ðộ lợi điện thế của mạch lúc này là: - Ðộ lợi này đủ để mạch dao động. Khi điện thế đỉnh của tín hiệu ngang qua R 4 khoảng 0.5volt thì các diode sẽ bắt đầu dẫn điện. D1 dẫn khi ngõ ra dương và D2 dẫn khi ngõ ra âm. Khi dẫn mạnhnhất, điện thế ngang diode xấp xỉ 0.7 volt. Ðể ý là hai diode chỉ dẫn điện ở phần đỉnh của tín hiệu ra vànó hoạt động như một điện trở thay đổi nối tiếp với R5 và song song với R4 làm giảm độ lợi của mạch,sao cho độ lợi lúc này xuống gần bằng 3 và có tác dụng làm giảm thiểu sự biến dạng. Việc phân giải hoạtđộng của diode trong vùng phi tuyến tương đối phức tạp, thực tế người ta mắc thêm một điện trở R5 (nhưhình vẽ) để điều chỉnh độ lợi của mạch sao cho độ biến dạng đạt đ ược ở mức thấp nhất. - Ngoài ra cũng nên để ý là độ biến dạng sẽ càng nhỏ khi biên độ tín hiệu ở ngõ ra càngthấp. Thực tế, để lấy tín hiệu ra của mạch dao động người ta có thể mắc thêm một mạch không đảo songsong với R1C1 như hình vẽ thay vì mắc nối tiếp ở ngõ ra của mạch dao động. Do tổng trở vào lớn, mạchnày gần như không ảnh hưởng đến hệ thống hồi tiếp nh ưng tín hiệu lấy ra có độ biến dạng được giảmthiểu đáng kể do tác động lọc của R1C1. - Một phương pháp khác để giảm biến dạng và tăng độ ổn định biên độ tín hiệu dao động,người ta sử dụng JFET trong mạch hồi tiếp âm nh ư một điện trở thay đổi. Lúc này JFET được phân cựctrong vùng điện trở (ohmic region-vùng ID chưa bảo hòa) và tác động như một điện trở thay đổi theo điệnthế (VVR-voltage variable resistor). - Ta xem mạch hình 10.10 - D1, D2 được dùng như mạch chỉnh lưu một bán kỳ (âm); C3 là tụ lọc. Mạch này tạo điệnthế âm phân cực cho JFET. - Khi cấp điện, mạch bắt đầu dao động, biên độ tín hiêu ra khi chưa đủ làm cho D1 và D2dẫn điện thì VGS = 0 tức JFET dẫn mạnh nhất và rds nhỏ nhất và độ lợi điện thế của op-amp đạt giá trị tốiđa. - Sự dao động tiếp tục, khi điện thế đỉnh ngõ ra âm đạt trị số xấp xỉ -(Vz + 0.7v) thì D1 vàD2 sẽ dẫn điện và VGS bắt đầu âm. - Sự gia tăng của tín hiệu điện thế đỉnh ngõ ra sẽ làm cho VGS càng âm tức rds tăng. Khi rdstăng, độ lợi Av của mạch giảm để cuối cùng đạt được độ lợi vòng bằng đơn vị khi mạch hoạt động ổnđịnh. - Thực tế, để mạch hoạt động ở điều kiện tốt nhất, người ta dùng biến trở R4 để có thể chỉnhđạt độ biến dạng thấp nhất. Vấn đề điều chỉnh tần số: - Trong mạch dao động cầu Wien, tần số và hệ số hồi tiếp được xác định bằng công thức: - N ...
Tìm kiếm theo từ khóa liên quan:
Mạch điện tử giáo trình Mạch điện tử bài giảng Mạch điện tử tài liệu Mạch điện tử đề cương Mạch điện tử lý thuyết Mạch điện tửGợi ý tài liệu liên quan:
-
BÀI GIẢNG LẬP TRÌNH GHÉP NỐI THIẾT BỊ NGOẠI VI
42 trang 261 2 0 -
ĐỒ ÁN TỐT NGHIỆP: THIẾT KẾ HỆ THỐNG CUNG CẤP ĐIỆN CHO NHÀ MÁY SẢN XUẤT GẠCH MEN SHIJAR
63 trang 232 0 0 -
Giáo trình Mạch điện tử - Trường Cao đẳng nghề Số 20
97 trang 169 0 0 -
Đồ án: Vẽ và thiết kế mạch in bằng Orcad
32 trang 103 0 0 -
231 trang 102 0 0
-
Đồ án Thiết kế mạch điện tử - Chuyên đề: Thiết kế mạch nguồn 12V - 3A
25 trang 92 1 0 -
Giáo trình Lý thuyết mạch tín hiệu - Tập 1: Phần 1 - PGS.TS. Đỗ Huy Giác, TS. Nguyễn Văn Tách
122 trang 91 0 0 -
4 trang 86 0 0
-
72 trang 85 0 0
-
Giáo trình điện tử căn bản chuyên ngành
0 trang 82 0 0