Machine learning-based pedo transfer function for estimating the soil compression index
Số trang: 12
Loại file: pdf
Dung lượng: 6.81 MB
Lượt xem: 14
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
The primary objective of this research is to develop an ML-PTF on the extreme gradient boosting (XGB) framework capable of estimating soil compression index with high precision and low effort. Furthermore, advancing the quantitative knowledge of which soil structural indicators determine soil compressibility using correlation analysis.
Nội dung trích xuất từ tài liệu:
Machine learning-based pedo transfer function for estimating the soil compression index
Nội dung trích xuất từ tài liệu:
Machine learning-based pedo transfer function for estimating the soil compression index
Tìm kiếm theo từ khóa liên quan:
Civil engineering Compression index Pedo transfer function Extreme gradient boostin Soil mechanicsGợi ý tài liệu liên quan:
-
Ebook Civil engineering reference manual for the PE exam (7th edition): Part 1
627 trang 96 0 0 -
Ebook Practical problems in soil mechanics and foundation engineering - Volume 1
294 trang 46 0 0 -
Ebook Limit analysis in soil mechanics: Part 2
124 trang 37 0 0 -
Ebook Limit analysis in soil mechanics: Part 1
123 trang 33 0 0 -
Particle Swarm Optimization using ε constraint-handling method developed in Python
7 trang 29 0 0 -
Compressibility characteristics of clays in the Red River Delta
17 trang 27 0 0 -
Ebook Advances in civil engineering and building materials IV
424 trang 25 0 0 -
Ebook Rock mass classification: A practical approach in civil engineering - Part 2
132 trang 25 0 0 -
10 trang 24 0 0
-
Ebook Wavelet analysis in civil engineering: Part 2
92 trang 21 0 0