Danh mục

Mô hình tính toán biến dạng thân máy tiện

Số trang: 5      Loại file: pdf      Dung lượng: 280.86 KB      Lượt xem: 17      Lượt tải: 0    
Thư viện của tui

Phí lưu trữ: miễn phí Tải xuống file đầy đủ (5 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Bài báo này trình bày mô hình nghiên cứu ảnh hưởng của lực xuất hiện trong quá trình cắt lên thân máy tiện bằng phương pháp phần tử hữu hạn. Các kết quả này là tiền đề cho việc nâng cao tính hiệu quả trong tính toán thiết kế các chi tiết có hình dáng không gian phức tạp và ứng dụng phương pháp số vào quá trình thiết kế chi tiết, bộ phận máy.
Nội dung trích xuất từ tài liệu:
Mô hình tính toán biến dạng thân máy tiện MÔ HÌNH TÍNH TOÁN BIẾN DẠNG THÂN MÁY TIỆN Nguyễn Thế Đoàn* Trường Đại học Kỹ thuật Công nghiệp – ĐH Thái Nguyên TÓM TẮT Bài báo này trình bày mô hình nghiên cứu ảnh hưởng của lực xuất hiện trong quá trình cắt lên thân máy tiện bằng phương pháp phần tử hữu hạn. Các kết quả này là tiền đề cho việc nâng cao tính hiệu quả trong tính toán thiết kế các chi tiết có hình dáng không gian phức tạp và ứng dụng phương pháp số vào quá trình thiết kế chi tiết, bộ phận máy.  ĐẶT VẤN ĐỀ Ngày nay, theo yêu cầu thực tế sản phẩm thường có kết cấu phức tạp và kỹ thuật thiết kế ngày càng phát triển cho phép tính toán thiết kế các vật thể có hình dáng hình học rất phức tạp thuộc các nhóm vỏ, tấm, khối, thanh … Tiêu chí để đánh giá trình độ thiết kế là Hình 1. Mô hình phần tử nút G  Kg    N  Kw  , phương pháp phần tử hữu hạn (FEMFinite Element Method) và các phần mềm FEM như Catia, Cosmos, Ansys … cho phép sơ đồ hóa và tính toán các sản phẩm loại này. Bài báo này nhằm giới thiệu trình tự tính toán các phần tử dạng vỏ mỏng có gân gờ, hốc kín, chi tiết thuộc cấu trúc phức tạp như kết cấu thân máy tiện. GIỚI THIỆU BÀI TOÁN Phương pháp phần tử hữu hạn (FEM - Finite Element Method) là một phương pháp số, dùng để giải các bài toán cơ học. Nội dung của phương pháp này là phân chia phần tử ra thành một tập hợp hữu hạn các miền con liền nhau nhưng không liên kết hoàn toàn với nhau trên khắp từng mặt biên của chúng. Trường chuyển vị, ứng suất, biến dạng được xác định trong từng miền con. Mỗi miền con được gọi là một phần tử hữu hạn. Dạng phần tử có thể là thanh, thanh dầm, tấm, vỏ, khối. Các phần tử được kết nối với nhau thông qua các nút, nút được đánh số theo thứ tự từ 1 đến n (n số nút của phần tử) Là phương pháp cho độ chính xác khá cao và kiểm tra kết quả rất thuận tiện. Ngày nay với sự trợ giúp của máy vi tính nên phương pháp này đã và đang được ứng dụng rộng rãi.  Phương pháp này xây dựng công thức dựa trên cơ sở hai phương pháp: phương pháp Tel: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn | 46 Nguyễn Thế Đoàn Tạp chí KHOA HỌC & CÔNG NGHỆ biến phân (phương pháp Rayleigh–Ritz) và phương pháp weighted residuals (phương pháp Galerkin). Các phương trình cơ bản đều được suy ra từ các phương trình cân bằng tĩnh học bởi các giá trị đặc trưng của điều kiện biên. YA YB ZA M XA M YB G1 G4 G5 Hình 3. Sơ đồ phân tích lực tác dụng YB YA M ZB Px M XA1 G1 G4 Thuật toán giải bài toán bằng phương pháp phần tử hữu hạn. A-A 300 1300 270 200 120 10 550 G2 Ngoài các ngoại lực tác dụng lên thân máy xuất hiện trong quá trình gia công, trên sơ đồ (hình 2) còn kể đến các nội lực như trọng lượng hộp tốc độ G1, ụ động G2 , hộp chạy dao G3, chi tiết gia công G4, trọng lượng thân máy G5 được thống kê với máy thực: Bảng 1. Thông số nội lực tác dụng 240 1850 PZ Hình 4. Sơ đồ tính lực 160 300 M XB1 Mx Py G5 350 450 K.hiệu G1 G2 G3 G4 G5 Trọng lượng 4000 1000 3000 427,04 5966,5 340 A XA=10022,763 N YA=3727,469 N B-B YB=2571,681 N ZB=5597,575 N M YA1=2389,578 Nm 50 B 300 B 400 XB M YB1 G3 30 70 ZB ZA M YA1 Khảo sát đối tượng thân máy T616 với tiết diện thay đổi, ảnh hưởng thành, vách, gân, gờ..) G2 Py G3 PZ (1) Ứng dụng phần mềm XB Px M YA M ZA XA ỨNG DỤNG PHẦN MỀM ANSYS VÀ ĐÁNH GIÁ KẾT QUẢ ZB M ZB M ZA XA Quá trình xây dựng các phương trình cân bằng của phương pháp phần tử hữu hạn dựa trên phương pháp Galerkin: Lu ( x)  f ( x) a  x  b   u (a)  u a u (b)  ub 74(12): 46 - 50 M ZB=625,426 Nm ZA= 5597,575 N 30 90 M XA1=596,39 Nm 40 A 330 XB=4929,365 N M x =1007,864 Nm 30 320 M YB1=1574,634 Nm P x=4912,1 N M XB1=411,469 Nm P y=6299,15 M ZA=446,46 Nm Hình 2. Mô hình hình học thân máy tiện G=21081,73 N Tính toán thiết kế thân máy ở chế độ tính toán với đường kính gia công 320 (mm), chiều dài 850 (mm), thân máy đúc, Thép 45 (HB=170 ,  E = 2.107 N/cm2, = 7,8 Kg/dm3), với chế độ cắt tính toán : t* = 4,35(mm) ,S* = 1,46(mm/vg), V* =18,52 ( m/ph) và lực cắt : Pz = 11688,19 (N), Py = 6299,15 (N), Px = 4912,10 (N) G 1 =4000 N G 2=1000 N Hình 5. Sơ đồ ngoại và nội lực tác dụng lên thân máy Khảo sát trạng thái chịu tác dụng của ngoại lực, nội lực lên thân máy tiện như hình 4 ở mô hình 3D và cho chạy trên phần mềm Ansys ta nhận được phản lực tại các nút, ứng suất nút, chuyển vị nút và tần số dao động riêng. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn | 47 Nguyễn Thế Đoàn Tạp chí KHOA HỌC & CÔNG NGHỆ 74(12): 46 - 50 Hình 9. Mô hình dạng chuyển vị Hình 6. Mô hình thân máy dạng 3D Hình 10. Mô hình dạng dao động riêng Hình 7. Mô hình phần tử (gồm 16073 phần tử, 29993 nút) Đánh giá kết quả * Kết quả dạng dữ liệu Ứng suất tương đương theo Von Mises Smax = 1,249 (N/mm2) Smin = 0,564E-03 (N/mm2) Chuyển vị : Theo phương ox (Node 3381): Ux = - 0.12438E-04 (mm) Theo phương oy (Node 2865): Uy = - 0.46546E-05 (mm) Theo phương oz (Node 1330): Uz = - 0.56923E-05 (mm) Tổng (Node 3381): Usum = 0.12454E-04 (mm) Phản lực lớn nhất: Hình 8. Mô hình dạng ứng suất Theo phương ox: Fx = 259.75 (kG) Theo phương oy: Fy = 724.91 (kG) Theo phương oz: Fz = 18.130 (kG) Các tần số dao động riêng: f1 = 0,42091 (Hz) f2 = 0,64470 (Hz) f3 = 0,73091 (Hz) f4 = 0,79875 (Hz) f5 = 1,0106 (Hz) * Đánh giá Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn | 48 Nguyễn Thế Đoàn Tạp chí KHOA HỌC & CÔNG NGHỆ - Công cụ phần mềm dễ thiết kế, gia công, hoạt động của mô hình đáp ứng được những yêu cầu đề ra. - Thao tác đơn giản, không cần tính toán. - Độ chính xác đạt yêu cầu. - Việc lựa chọn phần mềm để kiểm tính toán sức bền dễ dàng, kinh tế. KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN Kết luận - Xây dựng mô hình tính thân máy tiện đầy đủ hơn tính truyền thống. - Sử dụng phương pháp số vào trong quá trình thiết kế. - Ứng dụng phần mềm trong thiết kế máy và kết quả sau khi mô phỏng tính toán chấp ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: