Danh mục

Mô phỏng đặc tính thủy động lực học của tuabin thủy triều

Số trang: 6      Loại file: pdf      Dung lượng: 1.73 MB      Lượt xem: 22      Lượt tải: 0    
10.10.2023

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Một số đặc tính thủy động lực học không ổn định của một mô hình tuabin thủy triều đã được nghiên cứu bằng phần mềm FAST từ phòng thí nghiệm năng lượng tái tạo quốc gia Mỹ (NREL). Lý thuyết động lượng phần tử cánh (BEM) được áp dụng để thiết kế cánh tuabin với prophin S814.
Nội dung trích xuất từ tài liệu:
Mô phỏng đặc tính thủy động lực học của tuabin thủy triều CHÚC MỪNG NĂM MỚI 2019 KHOA HỌC - KỸ THUẬT MÔ PHỎNG ĐẶC TÍNH THỦY ĐỘNG LỰC HỌC CỦA TUABIN THỦY TRIỀU MODELLING THE HYDRODYNAMIC BEHAVIOUR OF TIDAL TURBINES TRẦN BẢO NGỌC HÀ Khoa Cơ sở Cơ bản, Trường Đại học Hàng hải Việt Nam Email liên hệ: hatbn@vimaru.edu.vn Tóm tắt Một số đặc tính thủy động lực học không ổn định của một mô hình tuabin thủy triều đã được nghiên cứu bằng phần mềm FAST từ phòng thí nghiệm năng lượng tái tạo quốc gia Mỹ (NREL). Lý thuyết động lượng phần tử cánh (BEM) được áp dụng để thiết kế cánh tuabin với prophin S814. Góc bước ban đầu được tối ưu hóa đảm bảo tuabin thủy triều làm việc ở hiệu suất cao nhưng nhẹ tải. Mô hình tuabin thủy triều, sau đó, được cho hoạt động dưới các dòng chảy dao động điều hòa với biên độ và tần số đơn đa dạng. Kết quả mô phỏng chỉ ra rằng các cánh tuabin không xảy ra chòng chành động lực học và góc bước tối ưu được duy trì trên suốt chiều dài cánh trong quá trình hoạt động. Từ khóa: Tuabin thủy triều, BEM, thủy động lực học, góc bước, chòng chành động học. Abstract Some unsteady hydrodynamic characteristics of a scale model tidal turbine have been researched by FAST software from National Renewable Energy Laboratory (NREL). The Blade Element Mometum theory (BEM) is applied to design the turbine blades of S814 profile. The initial angle of attack is optimized to ensure that the turbine model operates at high efficiency but light loads. Simulation results show that the tidal turbine model does not experience dynamic stall phenomenon and the optimal angle of attack is remained along the blade length during its operation. Keywords: Tidal turbine, BEM, hydrodynamic, angle of attack, dynamic stall. 1. Đặt vấn đề Tuabin thủy triều hoạt động trong các dòng chảy không ổn định suốt tuổi thọ của nó. Sự không ổn định bắt nguồn từ sự rối dòng chảy gây ra bởi độ nhám đáy biển, các hoạt động sóng và gió trên bề mặt nước. Bởi vậy, các đặc trưng thủy động lực học trên cánh tuabin thủy triều thường biến đổi liên tục theo thời gian, dẫn đến sự thay đổi tương ứng của các tải trọng cánh cũng như độ bền cấu trúc và tuổi thọ của chúng. Việc thiếu hiểu biết về đặc trưng thủy động lực học không ổn định này dẫn đến sự thiết kế quá cỡ của các tuabin thủy triều hoặc những sự phá hủy mỏi không báo trước. Các nhà nghiên cứu đã sử dụng những biện pháp khác nhau để khai thác đặc điểm thủy động lực học không ổn định của tuabin thủy triều [1-10]. Các nghiên cứu đã được tiến hành sử dụng mô hình trong các bể thử [1-4] và phương pháp số dựa trên lý thuyết động lượng phần tử cánh [5, 6] để nghiên cứu ảnh hưởng từ mật độ rối dòng chảy, sóng và góc tới cảm ứng. Mặc dù vậy, các biện pháp được sử dụng vẫn chưa tạo ra được những thông tin phục vụ cho việc tính toán rộng rãi các tuabin thủy triều ở kích thước thực tế. Các phương pháp số khá phức tạp và bị hạn chế trong việc tạo ra các dữ liệu có thể được áp dụng cho các tuabin thủy triều kích thước thật. Bởi vậy, phần mềm FAST [8] được đề xuất trong nghiên cứu này như một phần mềm kỹ thuật thân thiện với người sử dụng để đạt được các mô phỏng chính xác về các đặc trưng thủy động lực học không ổn định trên tuabin thủy triều. Thêm vào đó, các nghiên cứu trên đặc điểm thủy động lực học không ổn định của tuabin thủy triều thường được tiến hành bởi các thí nghiệm trong các dòng chảy dao động hai chiều [1, 7]. Tuy nhiên, toàn bộ vùng dòng chảy dao động hai chiều này vẫn chưa được đưa trọn vẹn vào các phương pháp số để mô phỏng đặc trưng thủy động lực học của tuabin thủy triều. Điều này được giải thích bởi sự hạn chế của các phương pháp số và mô hình toán học đang tồn tại trong việc mô phỏng chuyển động dao động. Bởi vậy, nghiên cứu này mục đích mô phỏng một số đặc điểm thủy động lực học không ổn định của một mô hình tuabin thủy triều dưới các dòng chảy dao động hai chiều ở các tần số phân biệt trên phần mềm FAST từ phòng nghiên cứu năng lượng tái tạo quốc gia Mỹ (NREL). Các dòng chảy được mô phỏng trên phần mềm TurbSim [10] cũng từ NREL để tạo ra các dao động đa dạng về tần số và mật độ so với dòng chảy thực. Đặc trưng động lực học không ổn định của mô hình tuabin thủy triều được thể hiện qua góc bước và hệ số lực nâng và lực cản tại một số tiết diện cánh nhất định. Tạp chí khoa học Công nghệ Hàng hải Số 57 - 01/2019 5 CHÚC MỪNG NĂM MỚI 2019 2. Mô hình tuabin thủy triều Một mô hình tuabin thủy triều ba cánh xoắn với prophin S814 và đường kính D = 0,5 m được thiết kế. Thay vì xác định sự phân bố của góc tới cảm ứng và chiều dài dây cung dọc theo các bán kính cánh trước thì một góc bước không đổi  = 2o dọc theo chiều dài cánh, tương ứng với tỷ số lực nâng và lực cản cao nhất L/D = 22,2 đã được lựa chọn. Sau đó, công thức Schimitz [11] được sử dụng để tính toán chiều dài dây cung dọc theo các bán kính cánh. Cuối cùng, sự phân bố của góc tới cảm ứng và chiều dày dây cung dọc theo chiều dài cánh được xác định như Hình 1. Hình 1. Sự phân bố của chiều dài, chiều dày dây cung và góc tới cảm ứng dọc theo cánh Mô hình tuabin thủy triều này được tính toán để hoạt động tối ưu ở tốc độ dòng chảy U = 1 m/s, tỷ số tốc độ đầu mút cánh tối ưu  = 6, công suất trục quay P = 39,3 W ứng với hệ số công suất CP = 0,391 (nhìn Hình 2) Hình 2. Sơ đồ mô hình tuabin thủy triều hoàn chỉnh 3. Phương pháp mô phỏng Phần mềm FAST [8] là viết tắt của Fatigue - Aerodynamics - Structures - Turbulence được sử dụng để tính toán các đặc điểm độ bền mỏi, thủy động lực học và cấu trúc của tuabin thủy triều và tuabin gió. Trong nghiên cứu này, phần mềm FAST được ứng dụng để mô phỏng các đặc điểm thủy động lực học không ổn định của một mô hình tuabin thủy triều. Phần mềm FAST yêu cầu 9 nhóm thông số đầu vào, trong đó một số nhóm thông số được đạt được từ các phần mềm khác như phần mềm VABS [12] từ trường Đại học Utah và Viện công nghệ Georgia, phần mềm Bmodes [13] và TurbSim [10]. Quá trình mô phỏng được biểu diễn bởi Hình 3. 6 Tạp chí khoa học Công nghệ Hàng hải Số 57 - ...

Tài liệu được xem nhiều: